[1] |
徐祖耀.自主创新发展超高强度钢[J].上海金属,2009,31(2): 1-6.
|
[2] |
徐祖耀.我国应尽早发展高强度钢[C]//中国工程院化工,冶金与材料工程学部第六届学术会议论文集.北京: 化学工业出版社,2007: 403-406.
|
[3] |
马鸣图,易红亮,路洪洲,等.论汽车轻量化[J].中国工程科学,2009,11(9): 20-27.
|
[4] |
马鸣图,易红亮.高强度钢在汽车制造中的应用[J].热处理,2011, 26(6): 9-20.
|
[5] |
张柯,许为宗,郭正洪,等.新型QPT和传统QT工艺对不同C含量马氏体钢组织和力学性能的影响[J].金属学报,2011,47(4): 489-496.
|
[6] |
JOHNSON W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1874, 23(156/163 ): 168-179.
|
[7] |
褚武扬.氢损伤和滞后断裂[M].北京: 冶金工业出版社,1988.
|
[8] |
LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.
|
[9] |
BLECK W, PHIU-ON K. Microalloying of cold-formable multi phase steel grades[J]. Materials Science Forum, 2005, 500/501: 97-114.
|
[10] |
马鸣图,吴宝榕.双相钢-物理和力学冶金[M].北京: 冶金工业出版社,1988.
|
[11] |
田志强,唐荻,江海涛,等.汽车用双相钢的研究与生产现状[J].机械工程材料,2009, 33(4): 1-5.
|
[12] |
DAVIES R G. Hydrogen embrittlement of dual-phase steels[J]. Metallurgical Transactions: A,1981, 12(9): 1667-1672.
|
[13] |
寿大云,王天宰,陈南平.双相钢的氢脆特性和断裂特征[J].兵器材料科学与工程,1987( 5): 1-7.
|
[14] |
FUCHIGAMI H, MINAMI H,NAGUMO M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure[J].Philosophical Magazine Letters, 2006, 86(1): 21-29.
|
[15] |
惠卫军,董瀚,翁宇庆,等.超细晶粒高强度钢的延迟断裂行为[J].金属学报,2004, 40(6): 561-568.
|
[16] |
孙曙明,顾家琳,陈南平.TEM研究氢对双相组织的影响[J].金属科学与工艺,1990, 9(2): 33-38.
|
[17] |
HADZIPASIC A B, MALINA J, NIZNIK S. The influence of microstructure on hydrogen diffusion in dual phase steel[J].Acta Metallurgica Slovaca, 2011, 17(2): 129-137.
|
[18] |
DUPREZ L, VERBEKEN K, VERHAEGE M. Effect of hydrogen on the mechanical properties of multiphase high strength steels[C]//Proceedings international conference on effects of hydrogen on materials. [S.l]: ASM International, 2009: 62-69.
|
[19] |
WILDE B E, KIM C D, PHELPS E H. Some observations on the role of inclusions in the hydrogen included blister cracking of linepipe steels in sulfide environments[J]. Corrosion, 1980, 36(11): 625-632.
|
[20] |
DOMIZZI G, ANTERI G, OVEJERO-GARCIA J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J]. Corrosion Science, 2001, 43(2): 325-339.
|
[21] |
PREZ ESCOBAR D, MINAMBRES C, DUPREZ L, et al. Internal and surface damage of multiphase steels and pure iron after Electrochemical hydrogen charging[J]. Corrosion Science, 2011, 53(10): 3166-3176.
|
[22] |
MCCOY R A, GERBERICH W W. Hydrogen embrittlement studies of a TRIP steel[J]. Metallurgical Transactions, 1973, 4(2): 539-547.
|
[23] |
RONEVICH J A, SPEER J G, MATLOCK D K. Hydrogen embrittlement of commercially produced advanced high strength sheet steels[J]. SAE International Journal of Materials & Manufacturing, 2010, 3(1): 255-267.
|
[24] |
RONEVICH J A, DE COOMAN B C, SPEER J G,et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metallurgical and Materials Transactions: A,2012, 43(7): 2293-2301.
|
[25] |
PEREZ ESCOBAR D, DEPOVER T, DUPREZ L. Combined thermal desorption spectroscopy,differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Materialia, 2012, 60(6): 2593-2605.
|
[26] |
李依依,范存淦,戎利建,等.抗氢脆奥氏体钢及抗氢铝[J].金属学报,2010, 46(11): 1335-1346.
|
[27] |
RYU J H, CHUN Y S, LEE C S,et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J].Acta Materialia, 2012, 60(10): 4085-4092.
|
[28] |
RYU J H. Hydrogen embrittlement in TRIP and TWIP steels[D]. Korea: Pohang University of Science and Technology, 2012.
|
[29] |
PEREZ ESCOBAR D, VERBEKEN K, DUPREZ L. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy[J]. Materials Science and Engineering: A, 2012, 551: 50-58.
|
[30] |
TAU L, CHAN S L I, SHIN C S. Hydrogen enhanced fatigue crack propagation of bainitic and tempered martensitic steels[J]. Corrosion Science, 1996, 38(11): 2049-2060.
|
[31] |
王晓东,王利,戎咏华.TRIP钢研究的现状与发展[J].热处理,2009, 23(6): 8-19.
|
[32] |
GRASSEL O, KRUGER L, FROMMEYER G, et al. High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application [J]. International Journal of Plasticity, 2000, 16(10): 1391-1409.
|
[33] |
MITTAL S C, PRASAD R C. Effect of hydrogen on fracture of austenitic Fe-Mn-C steel[J]. ISIJ International,1994, 34(2): 211-216.
|
[34] |
RONEVICH J A, KIM S K, SPEER J G, et al. Hydrogen effects on cathodically charged twinning-induced plasticity steel[J].Scripta Materialia, 2012, 66(12): 956-959.
|
[35] |
KOYAMA M, AKIYAMA E, TSUZAKI K.Effect of hydrgen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel[J]. Corrosion Science, 2012, 59: 277-281.
|
[36] |
KOYAMA M, SAWAGUCHI T, LEE T, et al. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(24): 7310-7316.
|
[37] |
KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel[J]. Scripta Materialia, 2012, 66(7): 459-462.
|
[38] |
KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging[J]. Acta Materialia,2013, 61(12): 4607-4618.
|
[39] |
SO K H, KIM J S, CHUN Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel[J]. ISIJ International,2009, 49(12): 1952-1959.
|
[40] |
MULLNER P, SOLENTHALER C, UGGOWITZER P J, et al. Brittle fracture in austenitic steel[J]. Acta Metallurgica et Materialia,1994,42(7): 2211-2217.
|
[41] |
MAHAJAN S, CHIN G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals[J]. Acta Metallurgica et Materialia, 1973, 21(2): 173-179.
|
[42] |
WANG Y B, SUI M L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries[J].Applied Physics Letters,2009, 94: 021909(1-3).
|
[43] |
ADLER P H, OLSON G B, OWEN W S. Strain hardening of hadfield manganese steel[J]. Metallurgical and Materials Transactions: A,1986,17(10): 1725-1737.
|
[44] |
DE COOMAN B C, CHIN K G, KIM J. High Mn TWIP steels for automotive applications[M]// CHIABERGE M. New Trends and Developments in Automotive System Engineering. [S.l.]: In Tech, 2011: 101-128.
|
[45] |
CHIN K G, KANG C Y, SHIN S Y, et al. Effect of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(6): 2922-2928.
|
[46] |
KOYAMA M, AKIYAMA E. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging[J]. ISIJ International, 2012, 52(12): 2283-2287.
|
[47] |
DUMAY A, CHATEAU J P, ALLAIN S,et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483: 184-187.
|
[48] |
KIM J, LEE S J, DE COOMAN B C. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity[J]. Scripta Materialia, 2011, 65(4): 363-366.
|
[49] |
PARK I J, JEONG K H, JUNG J G. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced Plasticity steels[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9925-9932.
|
[50] |
SPEER J G, EDMONDS D V,RIZZO F C. Partitioning of carbon from supersaturated plates of ferrite, with application to steel Processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 219-237.
|
[51] |
LOVICU G, BAGLIANI E P, DE SANCTIS M, et al. Hydrogen embrittlement of a medium carbon Q&P steel[J]. Metallurgical Italiana,2013(6): 3-10.
|
[52] |
LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.
|