• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

先进高强度钢氢脆的研究进展

罗洁, 郭正洪, 戎咏华

罗洁, 郭正洪, 戎咏华. 先进高强度钢氢脆的研究进展[J]. 机械工程材料, 2015, 39(8): 1-9. DOI: 10.11973/jxgccl201508001
引用本文: 罗洁, 郭正洪, 戎咏华. 先进高强度钢氢脆的研究进展[J]. 机械工程材料, 2015, 39(8): 1-9. DOI: 10.11973/jxgccl201508001
LUO Jie, GUO Zheng-hong, RONG Yong-hua. Research Progress on Hydrogen Embrittlement in Advanced High Strength Steels[J]. Materials and Mechanical Engineering, 2015, 39(8): 1-9. DOI: 10.11973/jxgccl201508001
Citation: LUO Jie, GUO Zheng-hong, RONG Yong-hua. Research Progress on Hydrogen Embrittlement in Advanced High Strength Steels[J]. Materials and Mechanical Engineering, 2015, 39(8): 1-9. DOI: 10.11973/jxgccl201508001

先进高强度钢氢脆的研究进展

基金项目: 

国家自然科学基金重点(51031001)和面上(51071101)资助项目

详细信息
    作者简介:

    罗洁(1989-), 男, 湖南岳阳人, 硕士研究生。

  • 中图分类号: TG142

Research Progress on Hydrogen Embrittlement in Advanced High Strength Steels

  • 摘要: 综述了先进高强度钢氢脆的研究进展, 重点介绍了双相钢、相变诱发塑性钢、孪生诱发塑性钢、淬火-配分钢等材料中的氢脆特征、断裂模式、断口形貌特点以及相关的断裂机制, 为揭示先进高强度钢的氢脆机理及提出相应的预防措施提供参考。
    Abstract: The research progress on hydrogen embrittlement in advanced high strength steel (AHSS), especially in dual-phase (DP) steel, transformation-induced plasticity (TRIP) steel, twinning-induced plasticity (TWIP) steel and quenching & partitioning (Q&P) steel, were briefly summarized. The hydrogen embrittlement features, fracture model, fractography and related fracture mechanism of these steels under the hydrogen environment were described in detail so as to provide reference for further research on mechanism of hydrogen embrittlement and relative prevention methods.
  • [1] 徐祖耀.自主创新发展超高强度钢[J].上海金属,2009,31(2): 1-6.
    [2] 徐祖耀.我国应尽早发展高强度钢[C]//中国工程院化工,冶金与材料工程学部第六届学术会议论文集.北京: 化学工业出版社,2007: 403-406.
    [3] 马鸣图,易红亮,路洪洲,等.论汽车轻量化[J].中国工程科学,2009,11(9): 20-27.
    [4] 马鸣图,易红亮.高强度钢在汽车制造中的应用[J].热处理,2011, 26(6): 9-20.
    [5] 张柯,许为宗,郭正洪,等.新型QPT和传统QT工艺对不同C含量马氏体钢组织和力学性能的影响[J].金属学报,2011,47(4): 489-496.
    [6] JOHNSON W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1874, 23(156/163 ): 168-179.
    [7] 褚武扬.氢损伤和滞后断裂[M].北京: 冶金工业出版社,1988.
    [8] LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.
    [9] BLECK W, PHIU-ON K. Microalloying of cold-formable multi phase steel grades[J]. Materials Science Forum, 2005, 500/501: 97-114.
    [10] 马鸣图,吴宝榕.双相钢-物理和力学冶金[M].北京: 冶金工业出版社,1988.
    [11] 田志强,唐荻,江海涛,等.汽车用双相钢的研究与生产现状[J].机械工程材料,2009, 33(4): 1-5.
    [12] DAVIES R G. Hydrogen embrittlement of dual-phase steels[J]. Metallurgical Transactions: A,1981, 12(9): 1667-1672.
    [13] 寿大云,王天宰,陈南平.双相钢的氢脆特性和断裂特征[J].兵器材料科学与工程,1987( 5): 1-7.
    [14] FUCHIGAMI H, MINAMI H,NAGUMO M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure[J].Philosophical Magazine Letters, 2006, 86(1): 21-29.
    [15] 惠卫军,董瀚,翁宇庆,等.超细晶粒高强度钢的延迟断裂行为[J].金属学报,2004, 40(6): 561-568.
    [16] 孙曙明,顾家琳,陈南平.TEM研究氢对双相组织的影响[J].金属科学与工艺,1990, 9(2): 33-38.
    [17] HADZIPASIC A B, MALINA J, NIZNIK S. The influence of microstructure on hydrogen diffusion in dual phase steel[J].Acta Metallurgica Slovaca, 2011, 17(2): 129-137.
    [18] DUPREZ L, VERBEKEN K, VERHAEGE M. Effect of hydrogen on the mechanical properties of multiphase high strength steels[C]//Proceedings international conference on effects of hydrogen on materials. [S.l]: ASM International, 2009: 62-69.
    [19] WILDE B E, KIM C D, PHELPS E H. Some observations on the role of inclusions in the hydrogen included blister cracking of linepipe steels in sulfide environments[J]. Corrosion, 1980, 36(11): 625-632.
    [20] DOMIZZI G, ANTERI G, OVEJERO-GARCIA J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J]. Corrosion Science, 2001, 43(2): 325-339.
    [21] PREZ ESCOBAR D, MINAMBRES C, DUPREZ L, et al. Internal and surface damage of multiphase steels and pure iron after Electrochemical hydrogen charging[J]. Corrosion Science, 2011, 53(10): 3166-3176.
    [22] MCCOY R A, GERBERICH W W. Hydrogen embrittlement studies of a TRIP steel[J]. Metallurgical Transactions, 1973, 4(2): 539-547.
    [23] RONEVICH J A, SPEER J G, MATLOCK D K. Hydrogen embrittlement of commercially produced advanced high strength sheet steels[J]. SAE International Journal of Materials & Manufacturing, 2010, 3(1): 255-267.
    [24] RONEVICH J A, DE COOMAN B C, SPEER J G,et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metallurgical and Materials Transactions: A,2012, 43(7): 2293-2301.
    [25] PEREZ ESCOBAR D, DEPOVER T, DUPREZ L. Combined thermal desorption spectroscopy,differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Materialia, 2012, 60(6): 2593-2605.
    [26] 李依依,范存淦,戎利建,等.抗氢脆奥氏体钢及抗氢铝[J].金属学报,2010, 46(11): 1335-1346.
    [27] RYU J H, CHUN Y S, LEE C S,et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J].Acta Materialia, 2012, 60(10): 4085-4092.
    [28] RYU J H. Hydrogen embrittlement in TRIP and TWIP steels[D]. Korea: Pohang University of Science and Technology, 2012.
    [29] PEREZ ESCOBAR D, VERBEKEN K, DUPREZ L. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy[J]. Materials Science and Engineering: A, 2012, 551: 50-58.
    [30] TAU L, CHAN S L I, SHIN C S. Hydrogen enhanced fatigue crack propagation of bainitic and tempered martensitic steels[J]. Corrosion Science, 1996, 38(11): 2049-2060.
    [31] 王晓东,王利,戎咏华.TRIP钢研究的现状与发展[J].热处理,2009, 23(6): 8-19.
    [32] GRASSEL O, KRUGER L, FROMMEYER G, et al. High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application [J]. International Journal of Plasticity, 2000, 16(10): 1391-1409.
    [33] MITTAL S C, PRASAD R C. Effect of hydrogen on fracture of austenitic Fe-Mn-C steel[J]. ISIJ International,1994, 34(2): 211-216.
    [34] RONEVICH J A, KIM S K, SPEER J G, et al. Hydrogen effects on cathodically charged twinning-induced plasticity steel[J].Scripta Materialia, 2012, 66(12): 956-959.
    [35] KOYAMA M, AKIYAMA E, TSUZAKI K.Effect of hydrgen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel[J]. Corrosion Science, 2012, 59: 277-281.
    [36] KOYAMA M, SAWAGUCHI T, LEE T, et al. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(24): 7310-7316.
    [37] KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel[J]. Scripta Materialia, 2012, 66(7): 459-462.
    [38] KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging[J]. Acta Materialia,2013, 61(12): 4607-4618.
    [39] SO K H, KIM J S, CHUN Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel[J]. ISIJ International,2009, 49(12): 1952-1959.
    [40] MULLNER P, SOLENTHALER C, UGGOWITZER P J, et al. Brittle fracture in austenitic steel[J]. Acta Metallurgica et Materialia,1994,42(7): 2211-2217.
    [41] MAHAJAN S, CHIN G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals[J]. Acta Metallurgica et Materialia, 1973, 21(2): 173-179.
    [42] WANG Y B, SUI M L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries[J].Applied Physics Letters,2009, 94: 021909(1-3).
    [43] ADLER P H, OLSON G B, OWEN W S. Strain hardening of hadfield manganese steel[J]. Metallurgical and Materials Transactions: A,1986,17(10): 1725-1737.
    [44] DE COOMAN B C, CHIN K G, KIM J. High Mn TWIP steels for automotive applications[M]// CHIABERGE M. New Trends and Developments in Automotive System Engineering. [S.l.]: In Tech, 2011: 101-128.
    [45] CHIN K G, KANG C Y, SHIN S Y, et al. Effect of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(6): 2922-2928.
    [46] KOYAMA M, AKIYAMA E. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging[J]. ISIJ International, 2012, 52(12): 2283-2287.
    [47] DUMAY A, CHATEAU J P, ALLAIN S,et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483: 184-187.
    [48] KIM J, LEE S J, DE COOMAN B C. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity[J]. Scripta Materialia, 2011, 65(4): 363-366.
    [49] PARK I J, JEONG K H, JUNG J G. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced Plasticity steels[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9925-9932.
    [50] SPEER J G, EDMONDS D V,RIZZO F C. Partitioning of carbon from supersaturated plates of ferrite, with application to steel Processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 219-237.
    [51] LOVICU G, BAGLIANI E P, DE SANCTIS M, et al. Hydrogen embrittlement of a medium carbon Q&P steel[J]. Metallurgical Italiana,2013(6): 3-10.
    [52] LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31

目录

    /

    返回文章
    返回