• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

测试位置对纳米压痕法测Nb/Cu复合材料线材硬度的影响

徐晓燕, 梁明, 王鹏飞, 焦高峰, 李成山

徐晓燕, 梁明, 王鹏飞, 焦高峰, 李成山. 测试位置对纳米压痕法测Nb/Cu复合材料线材硬度的影响[J]. 机械工程材料, 2015, 39(8): 39-42. DOI: 10.11973/jxgccl201508008
引用本文: 徐晓燕, 梁明, 王鹏飞, 焦高峰, 李成山. 测试位置对纳米压痕法测Nb/Cu复合材料线材硬度的影响[J]. 机械工程材料, 2015, 39(8): 39-42. DOI: 10.11973/jxgccl201508008
XU Xiao-yan, LIANG Ming, WANG Peng-fei, JIAO Gao-feng, LI Cheng-shan. Effect of Test Region on Hardness Testing for Cu/Nb Composite Wires in Nano-Indentation[J]. Materials and Mechanical Engineering, 2015, 39(8): 39-42. DOI: 10.11973/jxgccl201508008
Citation: XU Xiao-yan, LIANG Ming, WANG Peng-fei, JIAO Gao-feng, LI Cheng-shan. Effect of Test Region on Hardness Testing for Cu/Nb Composite Wires in Nano-Indentation[J]. Materials and Mechanical Engineering, 2015, 39(8): 39-42. DOI: 10.11973/jxgccl201508008

测试位置对纳米压痕法测Nb/Cu复合材料线材硬度的影响

基金项目: 

国家自然科学基金资助项目(51031002)

详细信息
    作者简介:

    徐晓燕(1980-),女,河南开封人,工程师,硕士。

  • 中图分类号: TG146; TG115.5

Effect of Test Region on Hardness Testing for Cu/Nb Composite Wires in Nano-Indentation

  • 摘要: 通过塑性变形获得不同直径的Nb/Cu复合材料线材, 采用纳米硬度计测得其不同区域的载荷-位移曲线, 用SEM和SPM观察压痕的形貌, 研究了测试位置对复合材料硬度测试结果的影响。结果表明: 卸载后的压痕深度与最大压痕深度的比值(hf/hmax)不大于0.8时, 位于铌丝、Cu-0层和Cu-1层纳米复合区域的压痕周围只存在极少量堆积, 压痕表面比较平整, 其硬度可以准确地反映Nb/Cu复合材料的硬度; 另外, 随着复合材料直径的减小, 材料硬度呈现明显的上升趋势。
    Abstract: Cu/Nb composite wires in different diameters were obtained through plastic deformation. Load-displacement curves were tested during nano-indentation test on different regions of the Cu/Nb composite wires. The characteristic of the indents was observed by scanning electron microscopy (SEM) and scanning probe microscopy (SPM). The influence of test region on the hardness of the composite wires was investigated. The results show that the ratio of the final displacement after complete unloading to the displacement at peak load (hf/hmax) was smaller than 0.8, very little pile-up and smooth surface around the indents were found in the nano-composite region of Nb core, Cu-0 and Cu-1 layers. The hardness of this region reflected the hardness of Cu/Nb composite accurately. Moreover, the hardness of the composite increased with the diameter of Cu-Nb wire decreasing.
  • [1] 陈吉安, 杨春生, 周勇, 等. 微桥结构镍膜的弹性模量和残余应力研究[J]. 微细加工技术, 2003(3): 66-71.
    [2] 张泰华. 纳米硬度计在MEMS力学检测中的应用[J]. 微纳电子技术, 2003,40(7): 212-214.
    [3] 石广丰, 徐志伟, 史国权, 等. 栅铝膜的纳米压入测试[J]. 机械工程材料, 2013, 37(7): 94-97.
    [4] 张星, 王鹤峰, 袁国政, 等. 基于纳米压痕试验的316L不锈钢表面钛、TiN薄膜结合性能的有限元模拟[J]. 机械工程材料, 2013, 37(9): 90-95.
    [5] 熊自柳, 蔡庆伍, 江海涛, 等. TRIP1000钢显微组织及不同组织的变形行为[J]. 机械工程材料, 2010, 34(10): 19-22.
    [6] 赵彦如, 佟金, 孙霁宇, 等. 蜻蜓膜翅前缘脉的纳米力学性能[J]. 农机化研究, 2009(11): 26-29.
    [7] 龚江宏, 赵喆, 吴建军, 等. 陶瓷材料Vickers硬度的压痕尺寸效应[J]. 硅酸盐学报, 1999, 27(6): 693-700.
    [8] HONG S I, HILL M A. Microstructure and conductivity of Cu-Nb microcomposites fabricated by the bundling and drawing process[J]. Scripta Materialia, 2001, 44(10): 2509-2515.
    [9] POPOVA E N, POPOV V V, ROMANOV E P, et al. Effect of deformation and annealing on texture parameters of composite Cu-Nb wire[J]. Scripta Materialia, 2004, 51(7): 727-731.
    [10] 邓丽萍, 杨晓芳, 卢亚锋, 等. Cu/Nb微观复合线材中Cu沿径向的织构研究[J].电子显微学报, 2011,30 (4/5): 399-402.
    [11] VIDAL V, THILLY L, VAN PETEGEM S. Plasticity of nanostructured Cu-Nb based wires: strengthening mechanisms revealed by in situ deformation under neutrons [J]. Scripta Materialia, 2009, 60 (3): 171-174.
    [12] NAYEB-HASHEMI H, VAZIRI A, ZIEMER K. Wear resistance of Cu-18% Nb (P/M) composites[J]. Materials Science and Engineering: A, 2008, 478: 390-396.
    [13] BOTCHAROVA E, FREUDENBERGER J, SCHULTZ L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Materialia, 2006, 54: 3333-3341.
    [14] SANDIM M J R, SANDIM H R, SHIGUE C Y, et al. Annealing effects on the magnetic properties of a multifilamentary Cu-Nb composite[J]. Supercond Sci Technol, 2003, 16: 307-313.
    [15] HAN K, EMBURY J D, SIMS J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J]. Materials Science and Engineering: A, 1999, 267: 99-114.
    [16] STAMOPOULOS D, PISSAS M, SANDIM M J R, et al. Proximity induced superconductivity in bulk Cu-Nb composites: the influence of interface’s structural quality[J]. Physica C: Superconductivity, 2006, 442 (1): 45-54.
    [17] THILLY L, VéRON M, LUDWIG O, et al. High-strength meterials: in-situ investigation of dislocation behaviour in Cu-Nb multifilamentary nanostructure composites[J]. Philosophical Magazine: A, 2002, 82: 925-942.
    [18] DEMKOWICZ M J, THILLY L. Structure, shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation[J]. Acta Materialia, 2011, 59(20): 7744-7756.
    [19] JIA N, ROTERS F, EISENLOHR P, et al. Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites[J]. Acta Materialia, 2013, 61(12): 4591-4606.
    [20] BOLSHAKOV A, OLIVER W C,PHARR G M. Finite element studies of the influence of pile-up on the analysis of nanoindentation data[J]. Materials Research Society, 1997, 436: 141-149.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-01

目录

    /

    返回文章
    返回