• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展

蔡伟, 王聪, 方小红, 陈小源, 杨立友

蔡伟, 王聪, 方小红, 陈小源, 杨立友. 化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展[J]. 机械工程材料, 2015, 39(11): 7-13. DOI: 10.11973/jxgccl201511002
引用本文: 蔡伟, 王聪, 方小红, 陈小源, 杨立友. 化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展[J]. 机械工程材料, 2015, 39(11): 7-13. DOI: 10.11973/jxgccl201511002
CAI Wei, WANG Cong, FANG Xiao-hong, CHEN Xiao-yuan, YANG Li-you. Progress in Transfer Technologies and Related Supporting Materials for Graphene Film Synthesized by Chemical Vapor Deposition[J]. Materials and Mechanical Engineering, 2015, 39(11): 7-13. DOI: 10.11973/jxgccl201511002
Citation: CAI Wei, WANG Cong, FANG Xiao-hong, CHEN Xiao-yuan, YANG Li-you. Progress in Transfer Technologies and Related Supporting Materials for Graphene Film Synthesized by Chemical Vapor Deposition[J]. Materials and Mechanical Engineering, 2015, 39(11): 7-13. DOI: 10.11973/jxgccl201511002

化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展

基金项目: 

上海市科委院地合作项目(13DZ1106000)

中国科学院国家外国专家局创新团队国际合作伙伴计划资助项目

详细信息
    作者简介:

    蔡伟(1991-),男,湖南长沙人,硕士研究生。

  • 中图分类号: O484.1

Progress in Transfer Technologies and Related Supporting Materials for Graphene Film Synthesized by Chemical Vapor Deposition

  • 摘要: 根据化学气相沉积生长石墨烯薄膜转移过程中支撑物的不同,将转移方法分为聚合物支撑法、非聚合物支撑法以及无支撑法,重点对聚合物支撑法用支撑材料进行了分析,并对相关的转移技术进行较完整的总结,并指出了未来的研究方向。
    Abstract: The transfter technologies for graphene film synthesized by chemical vapor deposition are divided into polymer support, non-polymeric support and unsupported methods according to different supporting materials. The supporting materials in polymer support method are emphatically analyzed and related supporting technologies are summarized, and the research directions in future are pointed.
  • [1] BERGER C, SONG Z, LI T, et al.Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916.
    [2] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602.
    [3] NAIR R R, BLAKE P, GRIGORENKO A N, et al.Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.
    [4] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
    [5] LEE C, WEI X, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
    [6] BERGER C, SONG Z, LI X, et al.Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196.
    [7] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
    [8] WANG H, WANG G, BAO P, et al.Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J]. Journal of the American Chemical Society, 2012, 134(8): 3627-3630.
    [9] MATTEVI C, KIM H, CHHOWALLA M. A review of chemical vapour deposition of graphene on copper[J]. Journal of Materials Chemistry, 2011, 21(10): 3324-3334.
    [10] ZHANG Y, ZHANG L, ZHOU C. Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339.
    [11] CLARSON S J, SEMLYEN J A, CLARSON S J. Siloxane polymers[M]. Englewood Cliffs, NJ: Prentice Hall, 1993.
    [12] KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710.
    [13] LEE Y, BAE S, JANG H, et al. Wafer-scale synthesis and transfer of graphene films[J]. Nano Letters,2010,10(2): 490-493.
    [14] JIAO L, FAN B, XIAN X, et al.Creation of nanostructures with poly (methyl methacrylate)-mediated nanotransfer printing[J]. Journal of the American Chemical Society, 2008, 130(38): 12612-12613.
    [15] REINA A, JIA X, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2008, 9(1): 30-35.
    [16] LI X, CAI W, AN J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
    [17] LI X, ZHU Y, CAI W, et al.Transfer of large-area graphene films for high-performance transparent conductive electrodes[J]. Nano Letters, 2009, 9(12): 4359-4363.
    [18] SUK J W, KITT A, MAGNUSON C W, et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 2011, 5(9): 6916-6924.
    [19] LIANG X, SPERLING B A, CALIZO I, et al. Toward clean and crackless transfer of graphene[J]. ACS Nano, 2011, 5(11): 9144-9153.
    [20] ZHENG G, CHEN Y, HUANG H, et al.Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics[J]. ACS Applied Materials & Interfaces,2013,5(20):10288-10293.
    [21] HER M, BEAMS R, NOVOTNY L. Graphene transfer with reduced residue[J]. Physics Letters A, 2013, 377(21): 1455-1458.
    [22] AHN Y, KIM H, KIM Y H, et al.Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene[J]. Applied Physics Letters,2013,102(9): 091602.
    [23] LIN Y C, LU C C, YEH C H, et al.Graphene annealing: how clean can it be?[J]. Nano Letters, 2011, 12(1): 414-419.
    [24] GONG C, FLORESCA H C, HINOJOS D, et al. Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide[J]. The Journal of Physical Chemistry C, 2013, 117(44): 23000-23008.
    [25] GAO L, NI G X, LIU Y, et al.Face-to-face transfer of wafer-scale graphene films[J]. Nature, 2013, 505: 190-194.
    [26] YANG X, PENG H, XIE Q, et al.Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate[J]. Journal of Electroanalytical Chemistry, 2013, 688: 243-248.
    [27] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578.
    [28] KANG J, HWANG S, KIM J H, et al.Efficient transfer of large-area graphene films onto rigid substrates by hot pressing[J]. ACS Nano, 2012, 6(6): 5360-5365.
    [29] KIM M, AN H S, LEE W J, et al. Low damage-transfer of graphene using epoxy bonding[J]. Electronic Materials Letters, 2013, 9(4): 517-521.
    [30] LIN Y C, JIN C, LEE J C, et al.Clean transfer of graphene for isolation and suspension[J]. ACS Nano, 2011, 5(3): 2362-2368.
    [31] CHEN X D, LIU Z B, ZHENG C Y, et al.High-quality and efficient transfer of large-area graphene films onto different substrates[J]. Carbon, 2013, 56: 271-278.
    [32] SONG J, KAM F Y, PNG R Q, et al.A general method for transferring graphene onto soft surfaces[J]. Nature Nanotechnology, 2013, 8(5): 356-362.
    [33] LEE W H, SUK J W, LEE J, et al. Simultaneous transfer and doping of CVD-Grown graphene by fluoropolymer for transparent conductive films on plastic[J]. ACS Nano, 2012, 6(2): 1284-1290.
    [34] GAO L, REN W, XU H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nature Communications, 2012, 3(2):23-25.
    [35] WANG Y, ZHENG Y, XU X, et al.Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst[J]. ACS Nano, 2011, 5(12): 9927-9933.
    [36] WANG X, TAO L, HAO Y, et al.Direct delamination of graphene for high-performance plastic electronics[J]. Small, 2014, 10(4): 694-698.
    [37] SHI R, XU H, CHEN B, et al.Scalable fabrication of graphene devices through photolithography[J]. Applied Physics Letters, 2013, 102(11): 113102.
    [38] DE LA ROSA C J L, SUN J, LINDVALL N, et al.Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu[J]. Applied Physics Letters, 2013, 102(2): 022101-022101-4.
    [39] CIUK T, PASTERNAK I, KRAJEWSKA A, et al. Properties of chemical vapor deposition graphene transferred by high-speed electrochemical delamination[J]. The Journal of Physical Chemistry C, 2013, 117(40): 20833-20837.
    [40] YOON T, SHIN W C, KIM T Y, et al.Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process[J]. Nano Letters, 2012, 12(3): 1448-1452.
    [41] LOCK E H, BARAKET M, LASKOSKI M, et al.High-quality uniform dry transfer of graphene to polymers[J]. Nano Letters, 2011, 12(1): 102-107.
    [42] REGAN W, ALEM N, ALEMN B, et al. A direct transfer of layer-area graphene[J]. Applied Physics Letters, 2010, 96(11): 113102-113102-3.
    [43] LIN W H, CHEN T H, CHANG J K, et al.A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate[J]. ACS Nano, 2014, 8(2): 1784-1791.
    [44] WANG D Y, HUANG I, HO P H, et al. Clean-lifting transfer of large-area residual-free graphene films[J]. Advanced Materials, 2013, 25(32): 4521-4526.
    [45] REN Y, ZHU C, CAI W, et al.An improved method for transferring graphene grown by chemical vapor deposition[J]. Nano, 2012, 7(1):1713-1716.
    [46] MARTINS L G P, SONG Y, ZENG T, et al. Direct transfer of graphene onto flexible substrates[J]. Bulletin of the American Physical Society, 2014, 110(44): 17762-17767.
    [47] LEE J, KIM Y, SHIN H J, et al. Clean transfer of graphene and its effect on contact resistance[J]. Applied Physics Letters, 2013, 103(10): 103104.
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-30
  • 刊出日期:  2015-11-19

目录

    /

    返回文章
    返回