• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

应变比对2.25Cr1MoV钢高温低周疲劳行为的影响

田阳, 陈巍峰, 赵姿贞, 陈旭

田阳, 陈巍峰, 赵姿贞, 陈旭. 应变比对2.25Cr1MoV钢高温低周疲劳行为的影响[J]. 机械工程材料, 2015, 39(11): 83-87. DOI: 10.11973/jxgccl201511019
引用本文: 田阳, 陈巍峰, 赵姿贞, 陈旭. 应变比对2.25Cr1MoV钢高温低周疲劳行为的影响[J]. 机械工程材料, 2015, 39(11): 83-87. DOI: 10.11973/jxgccl201511019
TIAN Yang, CHEN Wei-feng, ZHAO Zi-zhen, CHEN Xu. Effect of Strain Ratio on Low Cycle Fatigue Behavior of 2.25Cr1MoV Steel at High Temperature[J]. Materials and Mechanical Engineering, 2015, 39(11): 83-87. DOI: 10.11973/jxgccl201511019
Citation: TIAN Yang, CHEN Wei-feng, ZHAO Zi-zhen, CHEN Xu. Effect of Strain Ratio on Low Cycle Fatigue Behavior of 2.25Cr1MoV Steel at High Temperature[J]. Materials and Mechanical Engineering, 2015, 39(11): 83-87. DOI: 10.11973/jxgccl201511019

应变比对2.25Cr1MoV钢高温低周疲劳行为的影响

基金项目: 

国家自然科学基金资助项目(51435012)

教育部博士点基金资助项目(20130032110018)

详细信息
    作者简介:

    田阳(1988-),男,河南南阳人,硕士研究生。

  • 中图分类号: TG142.73

Effect of Strain Ratio on Low Cycle Fatigue Behavior of 2.25Cr1MoV Steel at High Temperature

  • 摘要: 利用MTS 810型疲劳试验机,采用轴向应变控制的方法,研究了应变比对2.25Cr1MoV钢高温(455 ℃)低周疲劳行为的影响。结果表明:在455 ℃下,2.25Cr1MoV钢呈现明显的循环软化特性;应变比不改变该钢的循环软化特性,但会产生初始平均应力,平均应力在寿命初期阶段随着循环周次增加急剧降低,并趋为0;应变比不改变疲劳裂纹的萌生方式,且对迟滞环的形状和大小没有影响;对称循环和非对称循环的低周疲劳寿命基本一致。
    Abstract: Low-cycle fatigue behavior of 2.25Cr1MoV steel at 455 ℃ were studied by using a MTS 810 fatigue testing system under strain-controlled conditions. The results reveal that the steel exhibited obvious cyclic softening feature. Strain ratio had no influence on cyclic softening feature but resulted in mean tensile stress. The mean stress relaxed to zero in early stage of life with the increase of cycle numbers. Fatigue crack initiation patterns had not changed by strain ratio, and hysteresis loop and fatigue life of the steel were not appreciably affected by the mean strain. The low cycle fatigue life for symmetric cycle was same with that for unsymmetirc cycle.
  • [1] ASME Boiler and Pressure Vessel Code-1998 Nuclear power plant components[S].
    [2] ASME Boiler and Pressure Vessel Code-1998 Rules for construction of pressure vessels[S].
    [3] JB 4732-2005 钢制压力容器-分析设计标准[S].
    [4] BS5500 British Standard for unfired fusion welded pressure vessel[S].
    [5] ATSUMI T, TAKERU T, SUSUMU S, et al. Proposal for the implementation of elevated temperature design fatigue curve for 2.25Cr1MoV and 3Cr1MoV steels[C]//ASME/JSME 2004 Pressure Vessels and Piping Conference. San Diego, California, USA:American Society of Mechanical Engineers, 2004: 7-14.
    [6] ZHAO M. Coupled creep fatigue analysis on 2.25Cr1MoV pressure components per code case 2605[C]//ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington, USA:American Society of Mechanical Engineers, 2010: 687-691.
    [7] BRINKMAN C R, STRIZAK J P, BOOKER M K, et al. Time-dependent strain-controlled fatigue behavior of annealed 2.25Cr1Mo steel for use in nuclear steam generator design[J]. Journal of Nuclear Materials, 1976, 62(2/3): 181-204.
    [8] CHALLENGER K D, MILLER A K, LANGDON R L. Elevated temperature fatigue with hold time in a low alloy steel: a predictive correlation[J]. Journal of Materials for Energy Systems, 1981,3(1):51-61.
    [9] CHALLENGER K D, BRINKMAN C R, MILLER A K. An explanation for the effects of hold periods on the elevated temperature fatigue behavior of 2-1/4 Cr-1 Mo steel[J]. Journal of Engineering Materials and Technology,1981,103(1):7-14.
    [10] JASKE C E. Fatigue curve needs for higher strength 2-1/4Cr-1Mo steel for petroleum process vessels[J]. Pressure Vessel Technol,1990,112(4): 323-332.
    [11] 叶菁.2.25Cr1Mo和2.25Cr1MoV钢高温疲劳裂纹扩展规律研究[J]. 化工装备技术,2006, 27(1):49-53.
    [12] 刘鑫刚,聂绍珉,任运来.高温扩散对 2.25 Cr-1Mo-0.25V钢锭组织与性能的影响[J].金属热处理,2008,32(12):81-84.
    [13] 李贵军.特种压力容器用钢2.25Cr1Mo的中温低周疲劳行为及寿命评估技术的研究[D]. 杭州:浙江大学, 2004.
    [14] 李永红.工业用钢2.25Cr1Mo与2.25Cr1Mo0.25V的性能对比分析[J]. 机械研究与应用, 2006, 19(4): 44-45.
    [15] KLIMAN V, BILY M. The influence of mode control, mean value and frequency of loading on the cyclic stress-strain curve[J]. Materials Science and Engineering, 1980, 44(1): 73-79.
    [16] ELLYIN F. Effect of tensile-mean-strain on plastic strain energy and cyclic response[J]. Journal of Engineering Materials and Technology, 1985, 107(2): 119-125.
    [17] WEHNER T, FATEMI A. Effects of mean stress on fatigue behavior of a hardened carbon steel[J]. International Journal of Fatigue, 1991, 13(3):241-148.
    [18] 闫桂玲,王弘, 高庆,等.平均应力对50钢超高周疲劳性能的影响[J]. 机械工程材料, 2006, 30(12):14-18.
    [19] 张仕朝,于慧臣, 李影.不同应变比下GH3030合金的高温低周疲劳行为[J]. 机械工程材料, 2014, 38(1):56-59, 63.
    [20] ARCARI A, VITA R D, DOWLING N. Mean stress relaxation during cyclic straining of high strength aluminum alloys[J]. International Journal of Fatigue, 2009, 31(11/12), 1742-1750.
    [21] MANSON S S. Fatigue: a complex subject-some simple approximations[J]. Experimental Mechanics,1965,5(4): 193-226.
    [22] BOWLES C Q, BROEK D. On the formation of fatigue striations[J]. International Journal of Fracture Mechanics,1972,8(1):75-85.
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-06
  • 刊出日期:  2015-11-19

目录

    /

    返回文章
    返回