• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

硼对钛合金成形能力和力学性能影响的研究进展

黄立国, 陈玉勇

黄立国, 陈玉勇. 硼对钛合金成形能力和力学性能影响的研究进展[J]. 机械工程材料, 2016, 40(6): 8-13. DOI: 10.11973/jxgccl201606002
引用本文: 黄立国, 陈玉勇. 硼对钛合金成形能力和力学性能影响的研究进展[J]. 机械工程材料, 2016, 40(6): 8-13. DOI: 10.11973/jxgccl201606002
HUANG Li-guo, CHEN Yu-yong. Research Progress of Effects of Boron on Formability and Mechanical Properties of Titanium Alloys[J]. Materials and Mechanical Engineering, 2016, 40(6): 8-13. DOI: 10.11973/jxgccl201606002
Citation: HUANG Li-guo, CHEN Yu-yong. Research Progress of Effects of Boron on Formability and Mechanical Properties of Titanium Alloys[J]. Materials and Mechanical Engineering, 2016, 40(6): 8-13. DOI: 10.11973/jxgccl201606002

硼对钛合金成形能力和力学性能影响的研究进展

基金项目: 

辽宁工程技术大学生产技术问题创新研究基金资助项目(20160045T)

辽宁工程技术大学博士科研启动基金资助项目(14-1122)

详细信息
    作者简介:

    黄立国(1979-), 男, 黑龙江绥化人, 博士。

  • 中图分类号: TG146.2

Research Progress of Effects of Boron on Formability and Mechanical Properties of Titanium Alloys

  • 摘要: 综述了硼对钛合金铸锭晶粒尺寸、成形能力以及力学性能影响的国内外研究进展。硼添加量(质量分数)为0.1%时, 钛合金铸锭晶粒尺寸得到显著细化, 合金成形能力和力学性能显著提高。硼对钛合金的晶粒细化作用归因于成分过冷机制, 而细小的晶粒尺寸有助于改善合金成形能力和力学性能。目前对含硼钛合金直接轧制工艺的优化及其疲劳和蠕变性能的研究还不够深入, 今后可从其冷轧成形能力、轧制对疲劳和蠕变性能的影响等方面展开研究。
    Abstract: The research progress of boron effects on the grain size, formability and mechanical properties of titanium alloy ingots are summarized. With the addition of 0.1wt% boron, the grain size of titanium alloy ingot is refined significantly and the formability and mechanical properties are improved remarkably. The grain refinement effect of boron on titanium alloy is attributed to the constitutional supercooling mechanism, and the refined grains contributed to the improvement of formability and mechanical properties of the alloys. The present studies of the direct rolling process optimization and the fatigue and creep behavior of boron containing titanium alloys are not deep enough. In future, the research can be focused on the cold rolling formability of these alloys and on the rolling influences on their fatigue and creep performance.
  • [1] TAMIRISAKANDALA S,MIRACLE D B.Microstructure engineering of titanium alloys via small boron additions[J].International Journal of Advances in Engineering Sciences and Applied Mathematics,2010,2(4):168-180.
    [2] RAVI CHANDRAN K S,PANDA K B,SAHAY S S.TiBw-reinforced Ti composites:processing, properties, application prospects, and research needs[J].JOM,2004,56(5):42-48.
    [3] LIU B,LIU Y,HE X Y,et al.Preparation and mechanical properties of particulate-reinforced powder metallurgy titanium matrix composites[J].Metallurgical and Materials Transactions A,2007,38(11):2825-2831.
    [4] 韩明臣.硼改性钛合金的显微组织特征及仿真研究[J].稀有金属快报,2007(10):44-45.
    [5] 戚运莲,曾立英,侯智敏,等.硼对TC4/B钛合金铸造组织与性能的影响[J].钛工业进展,2012(6):15-18.
    [6] BERMINGHAM M J,MCDONALD S D,NOGITA K,et al.Effects of boron on microstructure in cast titanium alloys[J].Scripta Materialia,2008,59(5):538-541.
    [7] SEN I,GOPINATH K,DATTA R,et al.Fatigue in Ti-6Al-4V-B alloys[J].Acta Materialia,2010,58(20):6799-6809.
    [8] CHANDRAVANSHI V K,SARKAR R,KAMAT S V,et al.Effect of boron on microstructure and mechanical properties of thermomechanically processed near alpha titanium alloy Ti-1100[J].Journal of Alloys and Compounds,2011,509(18):5506-5514.
    [9] ROY S,SUWAS S,TAMIRISAKANDALA S,et al.Development of solidification microstructure in boron-modified alloy Ti-6Al-4V-0.1B[J].Acta Materialia,2011,59(14):5494-5510.
    [10] ZHU J,KAMIYA A,YAMADA T,et al.Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys[J].Materials Science and Engineering A,2003,339(1/2):53-62.
    [11] TAMIRISAKANDALA S,BHAT R B,TILEY J S,et al.Grain refinement of cast titanium alloys via trace boron addition[J].Scripta Materialia,2005,53(12):1421-1426.
    [12] HUANG L G,KONG F T,CHEN Y Y,et al.Effects of trace TiB2 on microstructure in cast titanium alloys[J].International Journal of Cast Metals Research,2012,25(6):358-363.
    [13] SRINIVASAN R,MIRACLE D,TAMIRISAKANDALA S.Direct rolling of as-cast Ti-6Al-4V modified with trace additions of boron[J].Materials Science and Engineering A,2008,487(1/2):541-551.
    [14] SRINIVASAN R,BENNETT M,TAMIRISAKANDALA S,et al.Rolling of plates and sheets from as-cast Ti-6Al-4V-0.1B[J].Journal of Materials Engineering and Performance,2009,18(4):390-398.
    [15] CHEN W,BOEHLERT C J,PAYZANT E A,et al.The effect of processing on the 455 ℃ tensile and fatigue behavior of boron-modified Ti-6Al-4V[J].International Journal of Fatigue,2010,32(3):627-638.
    [16] CHANDRAVANSHI V K,SARKAR R,GHOSAL P,et al.Effect of minor additions of boron on microstructure and mechanical properties of as-cast near α titanium alloy[J]. Metallurgical and Materials Transactions A,2010,41(4):936-946.
    [17] ROY S,SARKAR A,SUWAS S.On characterization of deformation microstructure in boron modified Ti-6Al-4V alloy[J].Materials Science and Engineering A,2010,528(1):449-458.
    [18] HILL D,BANERJEE R,HUBER D,et al.Formation of equiaxed alpha in TiB reinforced Ti alloy composites[J].Scripta Materialia,2005,52(5):387-392.
    [19] SEN I,TAMIRISAKANDALA S,MIRACLE D B,et al.Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys[J].Acta Materialia,2007,55(15):4983-4993.
    [20] CHERUKURI B,SRINIVASAN R,TAMIRISAKANDALA S,et al.The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti-15Mo-2.6Nb-3Al-0.2Si[J].Scripta Materialia,2009,60(7):496-499.
    [21] HUANG L,CHEN Y,KONG F,et al.Direct rolling of Ti-6Al-4V-0.1B alloy sheets in the β phase region[J].Materials Science and Engineering A,2013,577:1-8.
    [22] HUANG L,KONG F,CHEN Y,et al.Microstructure and tensile properties of Ti-6Al-4V-0.1B alloys of direct rolling in the near β phase region[J].Materials Science and Engineering A,2013,560:140-147.
    [23] IVASISHIN O M,TELIOVYCH R V,IVANCHENKO V G,et al.Processing, Microstructure, Texture, and Tensile Properties of the Ti-6Al-4V-1.55B Eutectic Alloy[J].Metallurgical and Materials Transactions A,2008,39(2):402-416.
    [24] ABKOWITZ S,ABKOWITZ S,FISHER H,et al.CermeTi discontinuously reinforced Ti-matrix composites: manufacturing, properties, and applications[J].JOM,2004,56(5):37-41.
    [25] SAITO T.The automotive application of discontinuously reinforced TiB-Ti composites[J].JOM,2004,56(5):33-36.
    [26] PRASAD K,SARKAR R,GHOSAL P,et al.Tensile and creep properties of thermomechanically processed boron modified Timetal 834 titanium alloy[J].Materials Science and Engineering A,2011,528(22/23):6733-6741.
    [27] PRASAD K,SARKAR R,KAMAT S V,et al.Tensile behaviour of boron modified Timetal 834 titanium alloy in the intermediate temperature range 400-500 ℃[J].Journal of Alloys and Compounds,2011,509(27):7361-7367.
    [28] LI B S,SHANG J L,GUO J J,et al.In situ observation of fracture behavior of in situ TiBw/Ti composites[J].Materials Science and Engineering A,2004,383(2):316-322.
    [29] BOEHLERT C J,COWEN C J,TAMIRISAKANDALA S,et al.In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti-6Al-4V alloy[J].Scripta Materialia,2006,55(5):465-468.
    [30] GORSSE S,PETITCORPS Y L,MATAR S,et al.Investigation of the Young′s modulus of TiB needles in situ produced in titanium matrix composite[J].Materials Science and Engineering A,2003,340(1/2):80-87.
    [31] AFFDL J C H,KARDOS J L.The Halpin-Tsai equations:a review[J].Polymer Engineering & Science,1976,16(5):344-352.
    [32] FAN Z,MIODOWNIK A P,CHANDRASEKARAN L,et al.The Young′s moduli of in situ Ti/TiB composites obtained by rapid solidification processing[J].Journal of Materials Science,1994,29(4):1127-1134.
    [33] FAN Z,TSAKIROPOULOS P,MIODOWNIK A P.Prediction of Young′s modulus of particulate two phase composites[J].Materials Science and Technology,1992,8(10):922-929.
    [34] ATRI R R, RAVICHANDRAN K S, JHA S K. Elastic properties of in-situ processed Ti-TiB composites measured by impulse excitation of vibration[J]. Materials Science and Engineering A, 1999, 271(1/2): 150-159.
    [35] BANERJEE R, GEN A, COLLINS P C, et al. Comparison of microstructural evolution in laser-deposited and arc-melted in-situ Ti-TiB composites[J]. Metallurgical and Materials Transactions A, 2004, 35(7): 2143-2152.
    [36] SEN I, RAMAMURTY U. Elastic modulus of Ti-6Al-4V-xB alloys with B up to 0.55 wt.%[J]. Scripta Materialia, 2010, 62(1): 37-40.
    [37] TAMIRISAKANDALA S, BHAT R, TILEY J, et al. Processing, microstructure, and properties of β titanium alloys modified with boron[J]. Journal of Materials Engineering and Performance,2005,14(6):741-746.
    [38] SAITO T,TAKAMIYA H,FURUTA T.Thermomechanical properties of P/M β titanium metal matrix composite[J].Materials Science and Engineering A,1998,243(1/2):273-278.
    [39] SOBOYEJO W O,SHEN W,SRIVATSAN T S.An investigation of fatigue crack nucleation and growth in a Ti-6Al-4V/TiB in situ composite[J].Mechanics of Materials,2004,36(1/2):141-159.
    [40] PRASAD K,SARKAR R,KAMAT S V,et al.Fracture toughness and low cycle fatigue behaviour in boron modified Timetal 834 titanium alloy[J].Materials Science and Engineering A,2011,529:74-80.
    [41] CHEN W,BOEHLERT C J,PAYZANT E A,et al.The effect of processing on the 455 ℃ tensile and fatigue behavior of boron-modified Ti-6Al-4V[J]. International Journal of Fatigue,2010,32(3):627-638.
    [42] CHEN W,BOEHLERT C J.The 455 ℃ tensile and fatigue behavior of boron-modified Ti-6Al-2Sn-4Zr-2Mo-0.1Si(wt.%)[J].International Journal of Fatigue,2010,32(5):799-807.
    [43] MA Z Y,TJONG S C,LI S X.Creep behavior of TiBw/Ti in-situ composite fabricated by reactive hot pressing[J]. Metallurgical and Materials Transactions A,2001,32(4):1019-1022.
    [44] BOEHLERT C J,CHEN W.The elevated-temperature creep behavior of boron-modified Ti-6Al-4V alloys[J].Materials Transactions,2009,50(7):1690-1703.
    [45] CHEN W,BOEHLERT C J.Effect of boron on the elevated-temperature tensile and creep behavior of cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si(weight percent)[J].Metallurgical and Materials Transactions A,2009,40(7):1568-1578.
计量
  • 文章访问数:  24
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回