高级检索
    陈吉平, 白晓鹏, 丁智平, 唐先贺, 黄友剑, 穆龙海. 微孔聚氨酯粘弹性材料动态力学性能的有限元模拟[J]. 机械工程材料, 2016, 40(7): 64-67. DOI: 10.11973/jxgccl201607015
    引用本文: 陈吉平, 白晓鹏, 丁智平, 唐先贺, 黄友剑, 穆龙海. 微孔聚氨酯粘弹性材料动态力学性能的有限元模拟[J]. 机械工程材料, 2016, 40(7): 64-67. DOI: 10.11973/jxgccl201607015
    CHEN Ji-ping, BAI Xiao-peng, DING Zhi-ping, TANG Xian-he, HUANG You-jian, MU Long-hai. Finite Element Modelling for Dynamic Mechanical Properties of Microcellular Polyurethane Viscoelastic Material[J]. Materials and Mechanical Engineering, 2016, 40(7): 64-67. DOI: 10.11973/jxgccl201607015
    Citation: CHEN Ji-ping, BAI Xiao-peng, DING Zhi-ping, TANG Xian-he, HUANG You-jian, MU Long-hai. Finite Element Modelling for Dynamic Mechanical Properties of Microcellular Polyurethane Viscoelastic Material[J]. Materials and Mechanical Engineering, 2016, 40(7): 64-67. DOI: 10.11973/jxgccl201607015

    微孔聚氨酯粘弹性材料动态力学性能的有限元模拟

    Finite Element Modelling for Dynamic Mechanical Properties of Microcellular Polyurethane Viscoelastic Material

    • 摘要: 在不同温度下, 对WJ-8微孔聚氨酯粘弹性材料进行动态粘弹性试验, 研究了它的储能模量和损耗模量与温度、频率以及应变幅值之间的关系; 采用一到四阶广义Maxwell本构模型对扫频试验数据进行拟合, 最后选用四阶Maxwell模型参数, 采用Hypermensh和Abaqus软件对微孔聚氨酯弹性垫板的动态性能台架试验进行有限元模拟, 并将模拟得到的存贮刚度、损耗因子与试验值进行了对比。结果表明: 在-20~100 ℃的温度区间, 该材料的储能模量和损耗模量均随温度升高而呈单调减小; 当频率为0~5 Hz时, 储能模量和损耗模量随着频率的增大而增大; 在0~4%的应变幅值区间, 随着应变幅值增大, 损耗模量逐渐增大, 储能模量逐渐减小; 存贮刚度的模拟值与试验值的平均相对误差为5.2%, 损耗因子的平均相对误差为9.1%, 证明了有限元模拟结果的准确性。

       

      Abstract: In order to study the relation among storage modulus and loss modulus of microcellular polyurethane material with temperature, frequency and strain amplitude, the dynamic mechanical thermal analysis experiments of the material were carried out at different temperature. The first to fourth order generalized Maxwell model′s parameters were calculated by fitting the experimental data, and then, Hypermensh and Abaqus analysis softwares were used to simulate the dynamic bench tests of polyurethane elastic plate with four-order parameters of the Maxwell model, and simulated storage stiffness and loss factors were compared with experimental ones. The results show that storage modulus and loss modules decreased monotonously with temperature rising at -20 ℃ to 100 ℃ temperature range and increased with frequency rising in 0-5 Hz lower frequency range. The loss modules was increased gradually with the amplitude increasing while the storage modulus was the opposite trend within 0-4% strain amplitude range. Simulation and experimental average relative error of the storage stiffness and loss factor was 5.2% and 9.1%, respectively, these proved that the results of finite element modelling are correct.

       

    /

    返回文章
    返回