Serrated Flow Behavior of 11Cr3W3Co Steel during Tension at Different Temperatures
-
摘要: 在应变速率为5×10-5~2×10-4 s-1范围内以及不同温度(25~700℃)下对标准热处理态11Cr3W3Co钢进行拉伸试验,分析了不同温度下出现的锯齿流变行为。结果表明:在285~325℃区间出现了正常PLC效应,锯齿形成激活能约为124 kJ·mol-1,锯齿流变主要由固溶的置换原子铬与运动位错之间相互作用引起;在325~365℃区间出现了异常PLC效应,这一方面是因为随着拉伸温度升高,溶质原子的扩散能力增强,以至于原子气团不能稳定存在,导致动态应变时效作用减弱,另一方面是因为随温度升高,析出相开始成为溶质原子的湮没源,使得锯齿消失;在高温下,强度的急剧降低和塑性的急剧升高说明动态回复在塑性变形过程中起到主要的作用。
-
关键词:
- 11Cr3W3Co钢 /
- PLC效应 /
- 动态应变时效 /
- 锯齿流变 /
- 动态回复
Abstract: Tensile test was carried out on 11Cr3W3Co steel in standard heat treatment state at different strain rates (5×10-5-2×10-4 s-1) and different temperatures(25-700℃), and the serrated flow behavior at different temperature of the steel was analyzed. The results indicate that the normal Portevin Le Chatelier (PLC) effect with sawtooth formation activation energy of 124 kJ·mol-1 occurred at intermediate temperature of 285-325℃, serrated flow behavior was mainly caused by the interaction between substitutional solute chromium atoms and moving dislocations; regarding the abnormal PLC effect appeared at temperatures of 325-365℃, one possible reason is that the diffusion ability of solute atoms was strong with the increase of tensile temperature so that solute atmosphere was unstable to be present, resulting in a weaken of dynamic strain aging (DSA), another possible reason is that precipitates become sink positions due to the increase of temperature, resulting in a disappearance of serrated flow; at high temperature, rapid reduce in strength and rapid increase in plasticity imply that dynamic recovery plays a major role during the plastic deformation. -
-
[1] YI Y S, LEE B, KIM S, et al. Corrosion and corrosion fatigue behaviors of 9Cr steel in a supercritical water condition[J]. Materials Science and Engineering A, 2006, 429(1):161-168.
[2] GREEFF A P, LOUW C W, SWART H C. The oxidation of industrial FeCrMo steel[J]. Corrosion Science, 2000, 42(10):1725-1740.
[3] SHAMARDIN V K, GOLOVANOV V N, BULANOVA T M, et al. Mechanical properties and microstructure of advanced ferritic-martensitic steels used under high dose neutron irradiation[J]. Journal of Nuclear Materials, 1999, 271(1):155-161.
[4] TOLOCZKO M B, HAMILTON M L, MALOY S A. High temperature tensile testing of modified 9Cr-1Mo after irradiation with high energy protons[J]. Journal of Nuclear Materials, 2003, 318(1):200-206.
[5] WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1):176-201.
[6] MIYAZAKI I, ASANUMA M, HIGASHI Y, et al. Age-related changes in expression of metallothionein-III in rat brain[J]. Neuroscience Research, 2002, 43(4):323-333.
[7] 谭军, 李聪, 孙超, 等. Zr-4合金应力松弛过程中的热激活变形与动态应变时效[J]. 金属学报, 2009, 45(2):173-177. [8] TIAN B H. Ageing effect on serrated flow in Al-Mg alloys[J]. Materials Science and Engineering A, 2003, 349(1):272-278.
[9] BALIK J, LUKAC P, KUBIN L P. Inverse critical strains for jerky flow in Al-Mg alloys[J]. Scripta Materialia, 2000, 42(5):465-471.
[10] VERMA P, RAO G S, CHELLAPANDI P, et al. Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2015, 621(5):39-51.
[11] 彭开萍, 陈文哲, 钱匡武. 3004铝合金的拉伸变形特征[J]. 机械工程材料, 2005, 29(12):13-16. [12] 王刚, 李志刚, 韩鹏程, 等. 304奥氏体不锈钢高温拉伸变形时的锯齿流变行为[J]. 机械工程材料, 2012, 36(6):64-67. [13] CHOUDHARY B K, RAO K B S, MANNAN S L, et al. Influence of prior thermal ageing on tensile deformation and fracture behaviour of forged thick section 9Cr-1Mo ferritic steel[J]. Journal of Nuclear Materials, 1999, 273(3):315-325.
[14] GUPTA C, CHAKRAVARTTY J K, WADEKAR S L, et al. Effect of serrated flow on deformation behaviour of AISI 403 stainless steel[J]. Materials Science and Engineering A, 2000, 292(1):49-55.
[15] KELLER C, MARGULIES M M, GUILLOT I. Experimental analysis of the dynamic strain ageing for a modified T91 martensitic steel[J]. Materials Science and Engineering A, 2012, 536(1):273-275.
[16] SAMUEL K G, MANNAN S L, RODRIGUEZ P. Serrated yielding in AISI 316 stainless steel[J]. Acta Metallurgica, 1988, 36(8):2323-2327.
[17] CHOUDHARY B K, SAMUEL E L, SAINATH G, et al. Influence of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel[J]. Metallurgical and Materials Transactions A, 2013, 44(11):4979-4992.
[18] MCCORMIGK P G. A model for the Portevin-Le Chatelier effect in substitutional alloys[J]. Acta Metallurgica, 1972, 20(3):351-354.
[19] BOWEN A W, LEAK G M. Solute diffusion in alpha-and gamma-iron[J]. Metallurgical Transactions, 1970, 1(6):1695-1700.
[20] ABE F, KERN T U, VISWANATHAN R. Creep-resistant steels[M]. Cambridge England:Woodhead Publishing Limited, 2008:256.
[21] PINK E, KUMAR S, TIAN B H. Serrated flow of aluminium alloys influence by precipitates[J]. Materials Science and Engineering A, 2000, 280(1):17-24.
[22] KUMAR S, PONK E. Serrated flow in aluminium alloys containing lithium[J]. Acta Materialia, 1997, 45(12):5295-5301.
[23] BALIK J, LUKAC P, KUBIN L P. Inverse critical strains for jerky flow in Al-Mg alloys[J]. Scripta Materialia, 2000, 42(5):465-468.
[24] HAHNER P. On the critical conditions of the Portevin-Le Chatelier effect[J]. Acta Materialia, 1997, 45(9):3695-3707.
[25] MULFORD R A, KOCKS U F. New observations on the mechanisms of dynamic strain aging and of jerky flow[J]. Acta Materialia, 1979, 27(7):1125-1134.
[26] CHAENOCK W. The initiation of serrated yielding at elevated temperatures[J]. Philosophical Magazine, 1969, 20(164):427-432.
[27] HAYES R W. On a proposed theory for the disappearance of serrated flow in f.c.c. Ni alloys[J]. Acta Metallurgica, 1983, 31(3):365-371.
[28] HAYES R W, HAYEA W C. On the mechanism of delayed discontinuous plastic flow in an age-hardened nickel alloy[J]. Acta Metallurgica, 1982, 30(7):1295-1301.
[29] HAYES R W, HAYEA W C. A proposed model for the disappearance of serrated flow in two Fe alloys[J]. Acta Metallurgica, 1984, 32(2):259-267.
[30] GIROUX P F, DALLE F, SAUZAY M, et al. Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature[J]. Materials Science and Engineering A, 2010, 527(16):3984-3993.
[31] RODRIGUEZ P. Serrated plastic flow[J]. Bulletin of Materials Science, 1984, 6(4):653-663.
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 0