Static Softening Behavior of a High-Strength and High-Toughness Low-Alloy Martensite Steel
-
摘要: 以新开发的高强高韧20SiMn3NiA低合金马氏体钢为研究对象,用热模拟试验机对其在900~1000℃进行了双道次压缩,应变速率为1.0s-1,道次间隔时间为1~100s,研究了其静态软化行为。结果表明:当变形温度为900℃时,随着道次间隔时间的延长,试验钢在第二道次变形时的真应力-真应变曲线由动态再结晶型(软化趋势大于硬化趋势)变为静态再结晶型(硬化趋势大于软化趋势),静态再结晶率由道次间隔时间为1s时的6.48%增至稳定值85%;当变形温度为1000℃时,其第二道次变形时的真应力-真应变曲线均为静态再结晶型,静态再结晶率由道次间隔时间为1s时的84.48%增至100s时的96%;试验钢的静态再结晶激活能为448kJ·mol-1。Abstract: With the new developed high-strength and high-toughness 20SiMn3NiA low-alloy martensite steel as a research object, the double-pass compression tests were conducted on the steel by a thermal simulator at 900-1 000 ℃ and strain rate of 1.0 s-1 for pass intervals between 1 s and 100 s. And the static softening behavior of the steel was studied. The results show that at the deformation temperature of 900 ℃, with the pass interval prolonging, the true stress-true strain curves during second pass deformation of the tested steel exhibited a change from dynamic recrystallization character (namely greater trend of softening than hardening) to static recrystallization character (namely greater trend of hardening than softening). The static recrystallization fraction increased from 6.48% with pass interval of 1 s to a nearly stable value of 85%. At the deformation temperature of 1 000 ℃, the true stress-true strain curves during second pass deformation had a static recrystallization character. The static recrystallization fraction increased from 84.48% with pass interval of 1 s to 96% with pass interval of 100 s. The static active energy of the tested steel was 448 kJ ·mol-1.
-
Keywords:
- double-pass compression /
- static recystallization /
- active energy /
- martensite steel
-
-
[1] KRAUSS G. Deformation and fracture in martensitic carbon steels tempered at low temperatures[J]. Metall Mater Trans B, 2001, 32(2): 205-221.
[2] SAEGLITZ M, KRAUSS G. Deformation, fracture, and mechanical properties of low-temperature-tempered martensite in SAE 43xx steels[J]. Metall Mater Trans A, 1997, 28(2): 377-386.
[3] 赵艳君,许立伟,阎良萍,等.新型高强高韧低合金锰钢的研制[J].北京科技大学学报,2010,32(2):196-200. [4] ZHAO Y J, REN X P,YANG W C, et al. Design of a low alloy high strength and high toughness martensitic steel[J].International Journal of Minerals, Metallurgy and Materials,2013,20(8):733-740.
[5] 王良塑,贾书君,刘清友,等.热压缩变形参数对海底用X70管线钢再结晶行为的影响[J].机械工程材料,2016,40(3):102-106. [6] 王火生,傅高升,陈永禄,等.铝锰镁合金热压缩变形的流变应力曲线与本构方程[J].机械工程材料,2014,38(5):95-98. [7] 李壮,张平礼,李冶华,等.热轧带钢奥氏体静态再结晶模型的研究[J].塑性工程学报,2004,11(4):30-33. [8] 任安超,吉玉,赵隆崎,等.0.75C-0.11V微合金钢的静态再结晶行为[J].特殊钢,2008,29(4):26-27. [9] ANDRADE H L, AKBEN M G, JONAS J J. Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metallurgical Transactions A, 1983, 14A:1967-1977.
[10] 周晓峰.不同w(C)对20MnSi钢的热变形再结晶的影响[J].钢铁研究,2008,36(2):51-55. [11] 周晓峰.钒对20MnSi钢的热变形再结晶的影响[J].塑性工程学报,2007,14(1):20-23. [12] 邹天来,肖宝亮,董毅,等.高Nb微合金钢的静态再结晶行为研究[J].轧钢,2007,24(4):4-6. [13] LI G, MACCAGNO T M, BAI D Q, et al. Effect of initial grain size on the static recrystallization kinetics of Nb microalloyed steels[J].ISIJ International 1996,36(12):1479-1485.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 0