Effect of Irradiation Dose and Post-curing Temperature on Interlaminar Properties of Composite Stepwise Cured by Low Energy E-Beam
-
摘要: 采用一定剂量的低能电子束辐照预浸带并分层铺放,在不同温度下对预成型层合板进行热后固化制备复合材料,研究了辐照剂量及后固化温度对复合材料层间性能的影响。结果表明:上表面辐照剂量对复合材料层间剪切强度(ILSS)的影响比后固化温度的影响大,下表面辐照剂量的影响最小;当总辐照剂量(上下表面剂量之和)为100~130 kGy时,复合材料层间剪切强度较高(66.3 MPa);辐照总剂量大于130 kGy后,因黏接层平均固化度的增大导致复合材料层间黏接效果变差,层间剪切强度明显下降;后固化温度对经过低能电子束辐照后复合材料的固化速率影响较大,在满足预浸带上下表面完全固化的基础上,较低的固化温度能够改善复合材料的层间黏接性能并使其获得较高的层间剪切强度。Abstract: Prepregs were irradiated with different doses by low energy E-beam and placed layer by layer, then the preforming laminate was thermal post-cured with different temperatures to prepare composite. The effects of irradiation dose and the post-curing temperature on the interlaminar properties of composite were studied. The results show that the irradiation dose on the upper surface of the prepregs had the greater influence on interlaminar shear strength (ILSS) than the post-curing temperature, and the irradiation dose on the bottom surface of the prepreg had the smallest influence. The composite obtained the best ILSS of 66.3 MPa when the total irradiation dose(the sum of irradiation dose on the upper surface and bottom surface of the prepregs) ranged from 100-130 kGy. The ILSS decreased as the total irradiation dose with more than 130 kGy because of the poor adhesion between adjacent layers caused by increase of average curing degree. The post-curing temperature had a great influence on the curing rate of irradiated prepregs after irradiated with low energy E-Beam. The low post-curing temperature can improve the adhesive property and the composite could get a high ILSS when upper and bottom surface of prepregs were completely cured.
-
-
[1] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. [2] 黄汉生. 复合材料在飞机和汽车上的应用动向(二)[J]. 高科技纤维与应用, 2004, 29(6):28-34. [3] 张振英, 戴芳. 复合材料在坦克装甲车辆上的应用[J]. 塑料, 2000, 29(3):38-42. [4] 邱惠中, 江辉. 国外巡航导弹用材料及工艺[J]. 宇航材料工艺, 1998(4):9-14. [5] 陈亚莉. 开创复合材料应用新时代——波音787飞机复合材料选材和制造工艺[J]. 国际航空, 2007(8):20-22. [6] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007(1):1-12. [7] 益小苏, 张明, 安学锋,等. 先进航空树脂基复合材料研究与应用进展[J]. 工程塑料应用, 2009, 37(10):72-76. [8] MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53(1):21-42.
[9] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J]. Composites Part A:Applied Science & Manufacturing, 1999, 30(12):1445-1461.
[10] 冯宇, 何宇廷, 邵青, 等. 航空用纤维增强树脂基复合材料加筋板的剪切屈曲特性[J].机械工程材料,2013,37(7):82-84. [11] BEREJKA A J, EBERLE C. Electron beam curing of composites in North America[J]. Radiation Physics & Chemistry, 2002, 63(3):551-556.
[12] GLAUSER T, JOHANSSON M, HULT A. Electron-beam curing of thick thermoset composite matrices[J]. Polymer, 1999, 40(19):5297-5302.
[13] RAGHAVAN J. Evolution of cure, mechanical properties, and residual stress during electron beam curing of a polymer composite[J]. Composites Part A:Applied Science & Manufacturing, 2009, 40(3):300-308.
[14] RAGHAVAN J, BAILLIE M R. Electron beam curing of polymer composites[J]. Polymer Composites, 2000, 21(4):619-629.
[15] GUASTI F, ROSI E. Low energy electron beam curing for thick composite production[J]. Composites Part A:Applied Science & Manufacturing, 1997, 28(11):965-969.
[16] BYKANOV A N, GOODMAN D L, BYRNE C A, et al. Automated tape placement with in-situ electron beam cure:process parameter optimization[M]. Long Beach, USA:Society for the Advancement Material & Process Engineering Covina. 2002:902-918.
[17] BEZIERS D, PERILLEUX P, GRIENIE Y. Composite structures obtained by ionization curing[J]. Radiation Physics and Chemistry, 1996, 48(2):171-177.
[18] ZHAO X, DUAN Y, LI D, et al. Investigation of curing characteristics of carbon fiber/epoxy composites cured with low-energy electron beam[J].Polymer Composites, 2015, 39(9):1731-1737.
[19] 赵新明, 段玉岗, 刘潇龙, 等. 低能电子束原位固化树脂基复合材料纤维铺放制造及性能[J]. 机械工程学报, 2013, 49(11):121-127. [20] RIESEN R. Thermosets[M]. Shanghai:Donghua University Press, 2008.
[21] Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates:ASTM D 2344:2006[S/OL].[2016-02-16]. http://www.astm.org/cgi-bin/resolver.cgi?D2344D2344M.
[22] ZHANG J, DUAN Y, ZHAO X, et al. Irradiation dose control for polymer-matrix composites fabricated by in situ curing with low energy electron beam[J]. Journal of Applied Polymer Science, 2017,134(24):2444-2449.
[23] ZHANG J, DUAN Y, ZHANG X, et al. Effect of multi-walled nanotubes on the interlaminar shear strength of glass fiber/acrylate composite fabricated by stepwise ultra-violet light curing[J]. Polymer Composites, 2015,36(4):694-700.
[24] 包建文, 徐松华, 李晔, 等. 电子束固化高模量纤维增强复合材料力学性能研究[J]. 宇航材料工艺, 2003, 33(4):53-56. [25] NISHITSUJI D A, MARINUCCI G, EVORA M C, et al. Study of electron beam curing process using epoxy resin system[J]. Nuclear Instruments & Methods in Physics Research, 2007, 265(1):135-138.
[26] WANG H L,BAO J W, CHEN W X. Radiation effect of cationic initiators[J]. Journal of Beijing Normal University, 2000, 36(6):804-809.
[27] 王彦明, 王威强, 李爱菊, 等. 碳纤维增强酚醛树脂/石墨复合材料双极板的性能[J]. 机械工程材料, 2006, 30(7):4-6.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 0