• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

SiC含量对ZrB2-SiC/MgO-C低碳复合耐火材料性能的影响

王军凯, 程峰, 韩磊, 李赛赛, 葛胜涛, 宋健波, 张海军

王军凯, 程峰, 韩磊, 李赛赛, 葛胜涛, 宋健波, 张海军. SiC含量对ZrB2-SiC/MgO-C低碳复合耐火材料性能的影响[J]. 机械工程材料, 2018, 42(4): 68-72,77. DOI: 10.11973/jxgccl201804015
引用本文: 王军凯, 程峰, 韩磊, 李赛赛, 葛胜涛, 宋健波, 张海军. SiC含量对ZrB2-SiC/MgO-C低碳复合耐火材料性能的影响[J]. 机械工程材料, 2018, 42(4): 68-72,77. DOI: 10.11973/jxgccl201804015
WANG Junkai, CHENG Feng, HAN Lei, LI Saisai, GE Shengtao, SONG Jianbo, ZHANG Haijun. Effect of SiC Content on Properties of Low Carbon ZrB2-SiC/MgO-C Composite Refractory[J]. Materials and Mechanical Engineering, 2018, 42(4): 68-72,77. DOI: 10.11973/jxgccl201804015
Citation: WANG Junkai, CHENG Feng, HAN Lei, LI Saisai, GE Shengtao, SONG Jianbo, ZHANG Haijun. Effect of SiC Content on Properties of Low Carbon ZrB2-SiC/MgO-C Composite Refractory[J]. Materials and Mechanical Engineering, 2018, 42(4): 68-72,77. DOI: 10.11973/jxgccl201804015

SiC含量对ZrB2-SiC/MgO-C低碳复合耐火材料性能的影响

基金项目: 

国家自然科学基金资助项目(51472184,51472185)

详细信息
    作者简介:

    王军凯(1988-),男,河南平顶山人,博士研究生

  • 中图分类号: TQ175

Effect of SiC Content on Properties of Low Carbon ZrB2-SiC/MgO-C Composite Refractory

  • 摘要: 以镁砂、鳞片石墨和ZrB2-xSiC(x为0,20%,40%,60%,80%,100%,质量分数)复合粉为原料,经成型、干燥、固化和不同温度(1 373,1 673 K)保温3 h热处理后,制备得到ZrB2-SiC/MgO-C低碳复合耐火材料,研究了SiC含量对该耐火材料物理和力学性能的影响。结果表明:随SiC含量的增加,固化后复合耐火材料的体积密度和常温抗折强度先增大后减小再略有增大,耐压强度则波动性降低,当SiC质量分数为20%时,复合耐火材料的常温性能最佳;在1 673 K保温3 h热处理后,复合耐火材料的抗折强度随温度的升高呈先增大后减小的变化趋势,当SiC质量分数为20%时,不同温度下的抗折强度均达到最大;SiC含量的改变对不同温度下的载荷和位移关系影响较小,复合耐火材料的塑性变形开始温度为873~1 073 K,断裂温度均为1 673 K。
    Abstract: Low carbon ZrB2-SiC/MgO-C composite refractories were prepared after formation, drying, curing and heat treatment at different temperatures (1 373, 1 673 K) for 3 h with magnesia, flake graphite and ZrB2-xSiC composite powders as raw materials, where x was equal to 0, 20wt%, 40wt%, 60wt%, 80wt%, 100wt%, respectively, and then the effects of SiC content on the physical and mechanical properties of the refractory were investigated. The results show that with the increase of SiC content, the bulk density and rupture strength at ambient temperature of the cured composite refractory increased and then decreased and then increased slightly while the compressive strength decreased in volatility. The performance at ambient temperature of the composite refractory with 20wt% SiC was the best. After heat-treatment at 1 673 K for 3 h, the rupture strength of the composite refractory increased and then decreased with increasing temperature, and the rupture strength at different temperatures all reached the largest values with 20wt% SiC. The change of SiC content had little influence on the relation between load and displacement at different temperatures. The plastic deformation starting temperatures of the composite refractories were 873-1 073 K and the fracture temperature was 1 673 K.
  • [1] 程峰, 王军凯, 李发亮, 等. 低碳镁碳耐火材料的研究进展[J]. 耐火材料, 2015, 49(5):394-400.
    [2] 王军凯, 邓先功, 张海军, 等. 碳纳米管增强碳复合耐火材料的研究进展[J]. 耐火材料, 2016, 50(2):150-154.
    [3]

    WANG J, DENG X, LI F, et al. Recent progress of carbon nanotubes reinforced MgO-C and Al2O3-C refractories[J]. China's Refractories, 2014, 23(4):16-21.

    [4]

    WANG Z, WANG S, ZHANG X, et al. Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2-SiC matrix ultrahigh temperature ceramics[J]. Journal of Alloys and Compounds, 2009, 484(1/2):390-394.

    [5]

    ZHAO H, HE Y, JIN Z. Preparation of zirconium boride powder[J]. Journal of the American Ceramic Society, 1995, 78(9):2534-2536.

    [6]

    CHAMBERLAIN A, FAHRENHOLTZ W, HILMAS G. Pressureless sintering of zirconium diboride[J]. Journal of the American Ceramic Society, 2006, 89(2):450-456.

    [7]

    SCITI D, GUICCIARDI S, BELLOSI A, et al. Properties of a pressureless-sintered ZrB2-MoSi2 ceramic composite[J]. Journal of the American Ceramic Society,2006,89(7):2320-2322.

    [8]

    KHANRA A K, GODKHINDI M M, PATHAK L C. Comparative studies on sintering behavior of self-propagating high-temperature synthesized ultra-fine titanium diboride powder[J]. Journal of the American Ceramic Society, 2005, 88(6):1619-1621.

    [9]

    YAN Y, HUANG Z, DONG S, et al. New route to synthesize ultra-fine zirconium diboride powders using inorganic-organic hybrid precursors[J]. Journal of the American Ceramic Society, 2006, 89(11):3585-3588.

    [10] 陈肇友. ZrB2质与TiB2质耐火材料[J]. 耐火材料, 2000, 34(4):224-229.
    [11]

    FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation:Formation of a SiC-depleted region[J]. Journal of the American Ceramic Society, 2007, 90(1):143-148.

    [12]

    REZAIE A, FAHRENHOLTZ W G, HILMAS G E. Oxidation of zirconium diboride-silicon carbide at 1500℃ at a low partial pressure of oxygen[J]. Journal of the American Ceramic Society, 2006, 89(10):3240-3245.

    [13]

    CHEN H B, MENG S H. High temperature oxidation behavior of ZrB2-SiC-graphite composite heated by high electric current[J]. Advanced Materials Research, 2010, 105/106:162-164.

    [14]

    LEE J H, JIN B S, SHIN Y D. Effects of pressure on properties of SiC-ZrB2 composites through SPS[J]. Transactions of the Korean Institute of Electrical Engineers, 2011, 60(11):2083-2087.

    [15]

    LEE S J, KIM D K. Effect of TaB2 addition on the oxidation behaviors of ZrB2-SiC based ultra-high temperature ceramics[J]. Korean Journal of Materials Research, 2010, 20(4):217-222.

    [16]

    LI G, HAN W B. Oxidation properties of ZrB2-20vol.%SiC-10vol.%BN ceramic composite at 1200℃[J]. Advanced Materials Research, 2010, 105/106:165-167.

    [17] 张幸红, 胡平, 韩杰才, 等. 超高温陶瓷材料抗热冲击性能及抗氧化性能研究[J]. 中国材料进展, 2011, 30(1):27-31.
    [18]

    CAO Y, DU S, WANG J, et al. Preparation of zirconium diboride ultrafine hollow spheres by a combined sol-gel and boro/carbothermal reduction technique[J]. Journal of Sol-Gel Science and Technology, 2014, 72(1):130-136.

    [19] 曹迎楠, 王军凯, 张海军, 等. 溶胶-凝胶法和硼热-碳热还原合成ZrB2空心球粉体[J]. 耐火材料, 2016, 50(1):20-24.
    [20] 曹迎楠, 王军凯, 张海军, 等. 溶胶凝胶、硼热/碳热还原制备ZrB2-SiC超细复合粉体[J].稀有金属材料与工程, 2015, 44(S1):706-709.
    [21]

    DENG X, DU S, ZHANG H, et al. Preparation and characterization of ZrB2-SiC composite powders from zircon via microwave-assisted boro/carbothermal reduction[J]. Ceramics International, 2015, 41(10):14419-14426.

    [22] 王军凯, 杜爽, 邓先功, 等. 硼热/碳热还原反应合成ZrB2-SiC复合粉体及其抗氧化性能[J]. 硅酸盐学报, 2015, 43(9):1197-1202.
    [23] 杜爽, 曹迎楠, 张振聪, 等. 锆英石碳热还原合成ZrB2-SiC复合粉体[J]. 硅酸盐学报, 2014, 42(6):779-784.
    [24] 方伟, 赵雷, 于晓燕,等. 酚醛树脂在耐火材料中的应用及其研究现状[J]. 耐火材料, 2013, 47(4):303-306.
    [25]

    MAHATO S, BEHERA S K. Oxidation resistance and microstructural evolution in MgO-C refractories with expanded graphite[J]. Ceramics International, 2016, 42(6):7611-7619.

    [26]

    ZHONG X, ZHAO H. High-temperature porperties of refractory composites[J]. American Ceramic Society Bulletin, 1997, 78(7):98-101.

    [27] 徐恩霞, 黄少平, 钟香崇. 耐火材料高温弯曲应力-应变关系测试方法及影响因素[J]. 耐火材料, 2006, 40(5):382-385.
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-23
  • 修回日期:  2018-02-14
  • 刊出日期:  2018-04-19

目录

    /

    返回文章
    返回