Research Progress on Al-based Sliding Bearing Alloys
-
摘要: 从种类、组织和性能等方面对铝基滑动轴承合金的研究和应用情况进行了综述,介绍了组织细化、添加合金元素、表面改性和双尺度结构调控等提高铝基滑动轴承合金性能的方法;提出新型铝基滑动轴承合金可借鉴高性能合金的新型制备工艺和组织设计,并结合铝基合金轴瓦带材的制备技术来进行设计和制备。Abstract: The research and application situation of Al-based sliding bearing alloys is reviewed in terms of type, microstructure and properties. The methods including structure refinement, alloying element addition, surface modification and dual-scale structure controlling for improving the properties of Al-based sliding bearing alloys are described. It is proposed that the new Al-based sliding bearing alloy can be designed and prepared by referring to the new preparation process and microstructure design of high-performance alloys and combining the manufacture techniques of Al-based alloy bearing shell strip.
-
Keywords:
- Al-based alloy /
- lead-free /
- sliding bearing alloy /
- property
-
-
[1] 轴瓦行业研究报告[EB/OL].(2011-10-13)[2017-04-28]. http://wenku.baidu.com/view/zdd1c1a2284ac850ad02421f.html. [2] 易智强. 内燃机轴瓦涂层技术综述[J]. 内燃机配件, 2008(4):40-45. [3] 张宝义. 内燃机滑动轴承合金[M]. 北京:机械工业出版社, 1989:54. [4] 周卫铭, 郭忠诚, 龙晋明, 等. 电镀铅锡锑巴氏合金[J]. 机械工程材料, 2005, 29(1):27-29. [5] 蒋玉琴. 国内外汽车滑动轴承合金发展现状及趋势[J]. 汽车工艺与材料, 2009(3):10-13. [6] 李鹏. 国外内燃机滑动轴承合金无铅化及其应用[J]. 汽车工艺与材料, 2009(7):1-3. [7] 鲁忠臣. Al-Sn轴承合金的双相双尺度结构与摩擦学性能[D].广州:华南理工大学, 2013. [8] 李鹏. 国外公司新型系列无铅化铝基轴承合金材料的开发[J]. 汽车工艺与材料, 2013(9):12-19. [9] 陈玉明, 揭晓华, 吴锋, 等. 铝基滑动轴承合金材料的研究进展[J]. 材料研究与应用, 2007, 1(2):95-98. [10] SILVA A P, SPINELLI J E, GARCIA A. Thermal parameters and microstructure during transient directional solidification of a monotectic Al-Bi alloy[J]. Journal of Alloys and Compounds, 2009, 475(1/2):347-351.
[11] PHANIKUMAR G, DUTTA P, GALUN R, et al. Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al-Bi alloy[J]. Materials Science and Engineering:A, 2004, 371(1/2):91-102.
[12] 刘辛.互不溶Al-Sn合金的纳米相结构及其性能[D].广州:华南理工大学,2008. [13] 张宝义. 浅谈内燃机曲轴轴承(轴瓦)合金层材料及其双金属[J]. 内燃机与配件, 2014(11):14-18. [14] 蒋玉琴, 侯福建. 铝锡合金轴瓦在CA6102发动机上的应用[J]. 汽车工艺与材料, 1999(3):16-20. [15] 张文毓. 轴瓦材料工业化生产技术综合分析[J]. 新材料产业, 2008(4):47-50. [16] 马伟. 中锡铝合金轴瓦材料的开发应用[J]. 内燃机配件, 2004(2):17-19. [17] 李永伟, 张少明. Al-Pb轴瓦合金的应用及研究进展[J]. 材料导报, 1999, 13(2):4-7. [18] 倪红军. Al-Pb合金轴瓦材料的发展综述[J]. 特种铸造及有色合金, 1994(5):29-32. [19] 孙大仁, 王连武, 刘勇兵, 等. 塑性变形对搅拌铸造铝-铅轴承合金组织和性能的影响[J]. 机械工程材料, 2003, 27(8):31-33. [20] 徐永富, 朱敏. Al-Pb系耐磨合金的制造技术, 组织结构及力学性能[J]. 材料科学与工程, 1999, 17(2):71-75. [21] 刘春慧, 程先华. 动载滑动轴承疲劳失效过程研究[J]. 机械工程材料, 2000, 24(3):1-4. [22] 卢梅奎. 高速柴油机的硅铝合金轴承[J]. 车用发动机, 1982(5):47-50. [23] 邹稳根. 国内外机车柴油机轴瓦发展与水平综述[J]. 铁道机车车辆工人, 2006(4):1-8. [24] 汪蓓. 铝锌合金轴瓦材料微观组织与力学性能研究[D]. 武汉:武汉科技大学, 2011. [25] 徐理明, 包锡弟. 铝锌合金轴瓦的研究[J]. 内燃机配件, 1992(2):7-11. [26] 朱国乾. 含铋铝基轴承材料摩擦磨损性能研究[D]. 合肥:合肥工业大学, 2017. [27] LIU X, ZENG M Q, MA Y, et al. Promoting the high load-carrying capability of Al-20wt% Sn bearing alloys through creating nanocomposite structure by mechanical alloying[J]. Wear, 2012, 294:387-394.
[28] 尹树桐, 李庆芬, 郭亚军, 等.滑动轴承磁控溅射镀层技术的应用研究[J]. 中国表面工程, 2002, 15(2):39-41. [29] DE ROSA H, CARDUS G, BROITMAN E, et al. Structural properties of AlSn thin films deposited by magnetron sputtering[J]. Journal of Materials Science Letters, 2001, 20(14):1365-1367.
[30] HARRIS S J, MCCARTNEY D G, HORLOCK A J, et al. Production of ultrafine microstructure in Al-Sn, Al-Sn-Cu and Al-Sn-Cu-Si alloys for use in tribological applications[J]. Materials Science Forum, 2000, 331:519-526.
[31] KONG C J, BROWN P D, HARRIS S J, et al. The microstructures of a thermally sprayed and heat treated Al-20 wt.%Sn-3 wt.%Si alloy[J]. Materials Science and Engineering:A, 2005, 403(1/2):205-214.
[32] NOSKOVA N I, VIL'DANOVA N F, FILIPPOV Y I, et al. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys[J]. The Physics of Metals and Metallography, 2006, 102(6):646-651.
[33] LIU X, ZENG M Q, MA Y, et al. Wear behavior of Al-Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering[J]. Wear, 2008, 265(11):1857-1863.
[34] BHATTACHARYA V, CHATTOPADHYAY K. Microstructure and wear behaviour of aluminium alloys containing embedded nanoscaled lead dispersoids[J]. Acta Materialia, 2004, 52(8):2293-2304.
[35] RAN G, ZHOU J E, XI S, et al. Microstructure and morphology of Al-Pb bearing alloy synthesized by mechanical alloying and hot extrusion[J]. Journal of Alloys and Compounds, 2006, 419(1):66-70.
[36] 朱敏, 曾美琴, 欧阳柳章, 等. 机械合金化制备的Al基轴承合金的结构与性能[J]. 华南理工大学学报(自然科学版), 2007, 35(10):37-43. [37] ZHU M, ZENG M Q, GAO Y, et al. Microstructure and wear properties of Al-Pb-Cu alloys prepared by mechanical alloying[J]. Wear, 2002, 253(8):832-838.
[38] YUAN G C, ZHANG X M, LOU Y X, et al.Tribological characteristics of new series of Al-Sn-Si alloys[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(4):774-780.
[39] LUMLEY R N, SERCOMBE T B, SCHAFFER G M. Surface oxide and the role of magnesium during the sintering of aluminum[J]. Metallurgical and Materials Transactions A,1999, 30(2):457-463.
[40] LU Z C, GAO Y, ZENG M Q, et al. Improving wear performance of dual-scale Al-Sn alloys:The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear, 2014, 309(1):216-225.
[41] LU Z C, ZENG M Q, GAO Y, et al. Improving wear performance of dual-scale Al-Sn alloys by adding nano-Si@Sn:Effects of Sn nanophase lubrication and nano-Si polishing[J]. Wear, 2015, 338:258-267.
[42] 张乐山. 发动机轴承合金材料的无铅化发展状况[J].柴油机, 2005(增刊1):328-331. [43] MIYAJIMA T, TANAKA Y, KATSUKI H, et al. Friction and wear properties of lead-free aluminum alloy bearing material with molybdenum disulfide layer by a reciprocating test[J]. Tribology International, 2013, 59:17-22.
[44] AN J, SHEN X X, LU Y, et al. Microstructure and tribological properties of Al-Pb alloy modified by high current pulsed electron beam[J]. Wear, 2006,261(2):208-216.
[45] LU K. The future of metals[J]. Science, 2010, 328(5976):319-320.
[46] NEWBERY A P, NUTT S R, LAVERNIA E J. Multi-scale Al 5083 for military vehicles with improved performance[J]. JOM, 2006, 58(4):56-61.
[47] LU Z C, ZENG M Q, GAO Y, et al. Significant improvement of wear properties by creating micro/nano dual-scale structure in Al-Sn alloys[J]. Wear, 2012, 296(1):469-478.
[48] LU Z C, ZENG M Q, GAO Y, et al. Minimizing tribolayer damage by strength-ductility matching in dual-scale structured Al-Sn alloys:A mechanism for improving wear performance[J]. Wear, 2013, 304(1):162-172.
[49] SONG K Q, LU Z C, ZHU M, et al. A remarkable enhancement of mechanical and wear properties by creating a dual-scale structure in Al-Sn-Si alloy[J]. Surface and Coatings Technology, 2017,325:682-688.
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 0