• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

钛及钛合金粉末注射成形的研究进展

郭鲤, 詹浩, 游玉萍, 岳伟

郭鲤, 詹浩, 游玉萍, 岳伟. 钛及钛合金粉末注射成形的研究进展[J]. 机械工程材料, 2018, 42(6): 15-21,86. DOI: 10.11973/jxgccl201806003
引用本文: 郭鲤, 詹浩, 游玉萍, 岳伟. 钛及钛合金粉末注射成形的研究进展[J]. 机械工程材料, 2018, 42(6): 15-21,86. DOI: 10.11973/jxgccl201806003
GUO Li, ZHAN Hao, YOU Yuping, YUE Wei. Research Progress on Powder Injection Molding of Titanium and Titanium Alloy[J]. Materials and Mechanical Engineering, 2018, 42(6): 15-21,86. DOI: 10.11973/jxgccl201806003
Citation: GUO Li, ZHAN Hao, YOU Yuping, YUE Wei. Research Progress on Powder Injection Molding of Titanium and Titanium Alloy[J]. Materials and Mechanical Engineering, 2018, 42(6): 15-21,86. DOI: 10.11973/jxgccl201806003

钛及钛合金粉末注射成形的研究进展

基金项目: 

广东省科学院项目(2016GDASPT-0316;2017GDASCX-0114)

详细信息
    作者简介:

    郭鲤(1988-),男,江西吉安人,工程师,硕士

  • 中图分类号: TG146.2

Research Progress on Powder Injection Molding of Titanium and Titanium Alloy

  • 摘要: 简要介绍了钛及钛合金粉末注射成形技术的特点和优势。从原料粉体、黏结剂体系、注射成形工艺、成形后的性能及微观结构等方面综述了钛及钛合金粉末注射成形的研究进展,提出了未来钛及钛合金粉末注射成形的研究方向。
    Abstract: The characteristics and advantages of powder injection molding of titanium and titanium alloys are described in brief. The research progress on powder injection molding of titanium and titanium alloys is reviewed in terms of raw material powder, binder system, injection molding process, performance and microstructure after formation, etc. The research direction in future for powder injection molding of titanium and titanium alloys is also proposed.
  • [1] 肖永清.诠释现代车用钛合金的应用及前景[J]. 铝加工, 2008, 5(1):41-44.
    [2]

    CUI C X, HU B M, ZHAO L C, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials and Design, 2011, 32(3):1684-1691.

    [3]

    FROES F H. Advances in titanium metal injection molding[J]. Powder Metallurgy and Metal Ceramics, 2007, 46(5/6):303-310.

    [4]

    EBEL T. Advances in the metal injection moulding of titanium at Euro PM2014[J]. PIM International, 2015, 9(1):51-61.

    [5]

    VIRDHIAN S, OSADA T, KANG H, et al. Evaluation and analysis of distortion of complex shaped Ti-6Al-4V compacts by metal injection molding process[J]. Key Engineering Materials, 2012, 520:187-194.

    [6]

    HEANEY D. Handbook of metal injection molding[C]. Cambridge:Woodhead Publishing Limited, 2012, 46(4):203-210.

    [7] 曹家勇. 粉末冶金产业化的重要技术方向[J]. 新材料产业, 2004(11):29-34.
    [8]

    FROES F H. Powder injection molding (PIM) of titanium alloys:Ripe for expansion[J]. Materials Technology, 2000, 15(4):295-299.

    [9]

    FROES F H, GERMAN R M. Cost reductions prime Ti PIM for growth[J]. Metal Powder Report, 2000, 6(55):12-16.

    [10]

    GUO S B, QU X H, HE X B, et al. Mechanical properties and microstructure of Ti-6Al-4V compacts by metal injection molding[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(6):1054-1060.

    [11]

    HEIDLOFF A J, RIEKEN J R, ANDERSON I E, et al. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing[J]. JOM, 2010, 62(5):35-41.

    [12]

    GERMAN R M. Progress in titanium metal powder injection molding[J]. Materials, 2013, 6(8):3641-3662.

    [13]

    EBEL T. Metal injection molding (MIM) of titanium and titanium alloys[M]//Handbook of Metal Injection Molding. Cambridge:Woodhead Publishing Limited, 2012:415-445.

    [14]

    KATO K. Effect of sintering temperature on density and tensile properties of titanium compacts by metal injection molding[J]. Journal of the Japan Society of Powder and Power Metallurgy, 2009, 46(8):865-869.

    [15] 刘超, 孔祥吉, 吴胜文,等. 钛及钛合金金属粉末注射成形技术的研究进展[J]. 粉末冶金技术, 2017, 35(2):150-158.
    [16]

    CARRENO-MORELLI E, KRSTEVI W, ROMEIRA B, et al. Titanium parts by powder injection moulding of TiH2-based feedstocks[J]. PIM International, 2010, 4(3):60-63.

    [17]

    CARRENO-MORELLI E, BIDAUX J E, RODRÍGUEZ-ARBAIZAR M, et al. Production of titanium grade 4 components by powder injection moulding of titanium hydride[J]. Powder Metallurgy, 2014, 57(2):89-92.

    [18]

    CARRENO-MORELLI E, RODRÍGUEZ-ARBAIZAR M, AMHERD A, et al. Porous titanium processed by powder injection moulding of titanium hydride and space holders[J]. Powder Metallurgy, 2014, 57(2):93-97.

    [19] 喻岚. 注射成形钛合金的研究[D]. 长沙:中南大学,2004.
    [20]

    PARK S J, WU Y, HEANEY D F, et al. Rheological and thermal debinding behaviors in titanium powder injection molding[J]. Metallurgical and Materials Transactions A, 2009, 40(1):215-222.

    [21]

    BEAUCHAMP B, RAYMOR A P C. Leading the way with plasma atomised Ti spherical powders for MIM[J]. PIM International, 2011, 5(4):55-57.

    [22] 郭世柏, 曲选辉, 段柏华,等. 注射成形Ti-6Al-4V合金的显微组织和力学性能[J]. 北京科技大学学报, 2005, 27(3):307-311.
    [23]

    WEN G, CAO P, GABBITAS B, et al. Development and design of binder systems for titanium metal injection molding:An overview[J]. Metallurgical and Materials Transactions A, 2013, 44(3):1530-1547.

    [24]

    GUO S B, DUAN B H, HE X B, et al. Powder injection molding of pure titanium[J]. Rare Metals, 2009, 28(3):261-265.

    [25]

    FRIEDERICI V, BRUININK A, IMGRUND P, et al. Getting the powder mix right for design of bone implants[J]. Metal Powder Report, 2010, 65(7):14-16.

    [26]

    KRUG S, EVANS J R G, TER MAAT J H H. Transient effects during catalytic binder removal in ceramic injection moulding[J]. Journal of the European Ceramic Society, 2001, 21(12):2275-2283.

    [27]

    SIDMBE A T, FIGUEROA I A, HAMILTON H, et al. Metal injection moulding of Ti-64 components using a water soluble binder[J]. PIM International, 2010, 4(4):56-62.

    [28]

    SUZUKI K, FUKUSHIMA T. Binder for injection molding of metal powder or ceramic powder and composition and molding method wherein the same is used:US6171360 B1[P]. 2001-01-09.

    [29] 王家惠, 席健, 史庆南. 注射成形钛合金喂料装载量及流变特性研究[J]. 稀有金属材料与工程, 2012, 41(增刊2):827-831.
    [30] 郭世柏, 曲选辉, 段柏华,等. 钛合金粉末注射成形工艺参数的优化[J]. 材料工程, 2004(11):32-36.
    [31]

    SUPATI R, LOH N H, KHOR K A, et al. Mixing and characterization of feedstock for powder injection molding[J]. Materials Letters, 2000, 46(2/3):109-114.

    [32] 王家惠. 机械合金化制备纳米晶Ti-6Al-4V及其注射成形工艺研究[D]. 昆明:昆明理工大学, 2014.
    [33] 黄坤祥.金属粉末注射成形[M].台湾:粉末冶金协会,2013.
    [34]

    CHEN G, CAO P, WEN G, et al. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding[J]. Materials Chemistry and Physics, 2013, 139(2/3):557-565.

    [35]

    GERLING R, AUST E, LIMBERG W, et al. Metal injection moulding of gamma titanium aluminide alloy powder[J]. Materials Science and Engineering:A,2006,423(1/2):262-268.

    [36]

    THOMAS Y, BARIL E. Supercritical CO2 debinding:Benefits to titanium powder injection moulding?[C]//World PM2010.[S.l.]:European Powder Metallurgy Association, 2010.

    [37] 刘超, 孔祥吉, 况春江. 生物医用二级纯钛注射成形研究[J]. 粉末冶金技术, 2016, 34(4):281-284.
    [38]

    OBASI G C, FERRI O M, EBEL T, et al. Influence of processing parameters on mechanical properties of Ti-6Al-4V alloy fabricated by MIM[J]. Materials Science and Engineering:A, 2010, 527(16/17):3929-3935.

    [39]

    NOR N H M, MUHAMAD N, AHMAD S, et al. Sintering parameter optimization of Ti-6Al-4V metal injection molding for highest strength using palm stearin binder[J]. Procedia Engineering, 2013,68:359-364.

    [40]

    SIDAMBE A T, FIGUCROA I A, HAMILTON H, et al. Sintering study of CP-Ti and Ti-6Al-4V metal injection moulding parts using Taguchi method[C]//Euro PM2009.[S.l.]:European Powder Metallurgy Association, 2009.

    [41]

    ISMAIL M H, GOODALL R, DAVIES H A, et al. Porous NiTi alloy by metal injection moulding/sintering of elemental powders:Effect of sintering temperature[J]. Materials Letters, 2012, 70:142-145.

    [42]

    LIMBERG W, EBEL T, PYCZAK F, et al. Influence of the sintering atmosphere on the tensile properties of MIM-processed Ti45Al5Nb0.2B0.2C[J]. Materials Science and Engineering:A, 2012, 552:323-329.

    [43]

    CARMAN A, ZHANG L C, IVASISHIN O M, et al. Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy[J]. Materials Science and Engineering:A, 2011, 528(3):1686-1693.

    [44]

    WEI W, LIU Y, ZHOU K, et al. Effect of Fe addition on sintering behaviour of titanium powder[J]. Powder Metallurgy, 2003, 46(3):246-250.

    [45]

    GULSOY H O, GUNAY V, BAYKARA T, et al. Injection molding of mechanical alloyed Ti-Fe-Zr powder[J]. Materials Transactions, 2012, 53(6):1100-1105.

    [46]

    LUO S D, YANG Y F, SCHAFFER G B, et al. The effect of a small addition of boron on the sintering densification, microstructure and mechanical properties of powder metallurgy Ti-7Ni alloy[J]. Journal of Alloys and Compounds, 2013, 555:339-346.

    [47]

    FERRI O M, EBEL T, BORMANN R. The influence of a small boron addition on the microstructure and mechanical properties of Ti-6Al-4V fabricated by metal injection moulding[J]. Advanced Engineering Materials, 2011, 13(5):436-447.

    [48]

    FERRI O M, EBEL T, BORMANN R. Influence of surface quality and porosity on fatigue behaviour of Ti-6Al-4V components processed by MIM[J]. Materials Science and Engineering:A, 2010, 527(7/8):1800-1805.

    [49]

    BENSON J M, CHIKWANDA H K. The challenges of titanium metal injection moulding[J]. Journal for New Generation Sciences, 2009, 7(3):1-14.

    [50]

    EWART P, JULL H, KVNNEMEYER R, et al. Identification of contamination levels and the microstructure of metal injection moulded titanium[J].Key Engineering Materials, 2016, 704:161-169.

    [51]

    UEMATSU T, ITOH Y, SATO K, et al. Effects of substrate for sintering on the mechanical properties of injection molded Ti-6Al-4V alloy[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53(9):755-759.

    [52]

    ZHAO D, EBEL T, YAN M, et al. Trace carbon in biomedical beta-titanium alloys:Recent progress[J]. JOM, 2015, 67(10):2236-2243.

    [53]

    SOYAMA J, OEHRING M, EBEL T, et al. Sintering behavior and microstructure formation of titanium aluminide alloys processed by metal injection molding[J]. JOM, 2017,69(4):676-682.

    [54]

    XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85:74-84.

    [55]

    SIDAMBE A T, FIGUEROA I A, HAMILTON H G C, et al. Metal injection moulding of CP-Ti components for biomedical applications[J]. Journal of Materials Processing Technology, 2012, 212(7):1591-1597.

    [56]

    GU Y W, YONG M S, TAY B Y, et al. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2[J]. Materials Science and Engineering:C, 2009, 29(5):1515-1520.

    [57]

    TUNCER N, BRAM M, LAPTEV A, et al. Study of metal injection molding of highly porous titanium by physical modeling and direct experiments[J]. Journal of Materials Processing Technology, 2014, 214(7):1352-1360.

    [58]

    CHEN L J, LI T, LI Y M, et al. Porous titanium implants fabricated by metal injection molding[J]. Transactions of Nonferrous Metals Society of China,2009,19(5):1174-1179.

    [59]

    THIAN E S, LOH N H, KHOR K A, et al. Effects of debinding parameters on powder injection molded Ti-6Al-4V/HA composite parts[J]. Advanced Powder Technology, 2001, 12(3):361-370.

    [60]

    AUST E, LIMBERG W, GERLING R, et al. Advanced TiAl6Nb7 bone screw implant fabricated by metal injection moulding[J]. Advanced Engineering Materials, 2006, 8(5):365-370.

    [61]

    AROCKIASAMY A, GERMAN R M, HEANEY D F, et al. Effect of additives on sintering response of titanium by powder injection moulding[J]. Powder Metallurgy, 2011, 54(3):420-426.

    [62] 杨伟,张崇才,涂铭旌. 钛及钛合金粉末注射成型研究近况及应用前景[J]. 材料导报, 2015, 29(5):123-128.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-06-19

目录

    /

    返回文章
    返回