Effect of Graphene Addition Amount on Properties of Pressureless Sintered Graphene/Silicon Carbide Ceramic Composite
-
摘要: 在碳化硅粉中添加质量分数为1%~5%的石墨烯,采用无压烧结工艺在2 190℃保温1 h制备石墨烯/碳化硅陶瓷复合材料,研究了石墨烯添加量对复合材料物相组成、密度和力学性能的影响。结果表明:该复合材料由碳化硅相及少量石墨相组成;随着石墨烯添加量的增加,复合材料的密度下降,相对密度变化较小,抗弯强度和断裂韧度先增大后减小,硬度下降;当石墨烯的质量分数为3%时,复合材料的抗弯强度为395 MPa、硬度为89 HRA、断裂韧度为6.0 MPa·m1/2,综合力学性能最好。Abstract: Graphene/silicon carbide ceramic composites were prepared by pressureless sintering silicon carbide powders with addition of 1wt%-5wt% graphenes at 2 190℃ for 1 h. The effects of graphene addition amount on the phase composition, density and mechanical properties of the composite were studied. The results show that the composite was composed of silicon carbide phase and small amount of graphite phase. With the increase of graphene addition amount, the density of the composite decreased, the relative density changed little, the bending strength and fracture toughness increased first and then decreased, and the hardness decreased. When the mass fraction of graphene was 3%, the bending strength of the composite was 395 MPa, the hardness was 89 HRA and the fracture toughness was 6.0 MPa·m1/2; the comprehensive mechanical properties were the highest.
-
Keywords:
- silicon carbide /
- composite /
- graphene /
- pressureless sintering
-
-
[1] 熊昆, 徐光亮, 李冬梅. SiC复相陶瓷的强化增韧趋势[J]. 稀有金属, 2008, 32(1):101-106. [2] 韩同伟, 贺鹏飞, 骆英,等. 石墨烯力学性能研究进展[J]. 力学进展, 2011, 41(3):279-293. [3] 徐政, 陈志刚, 钱君超,等. CeO2-MnO2纳米氧化物/石墨烯复合电极材料的制备及其超级电容性能[J]. 机械工程材料, 2015, 39(8):70-74. [4] 刘华斌. 高导热碳材料研究进展[J]. 机械工程材料, 2013, 37(10):1-4. [5] WANG K, WANG Y, FAN Z, et al. Preparation of graphene nanosheet/alumina composites by spark plasma sintering[J]. Materials Research Bulletin, 2011, 46(2):315-318.
[6] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5(4):3182-3190.
[7] RAMIREZ C, MIRANZO P, BELMONTE M, et al. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets[J]. Journal of the European Ceramic Society, 2014, 34(2):161-169.
[8] PORWAL H, GRASSO S, REECE M J. Review of graphene-ceramic matrix composites[J]. Advances in Applied Ceramics, 2013, 112(8):443-454.
[9] KVETKOVÁ L, DUSZOVÁ A, HVIZDOŠ P, et al. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites[J]. Scripta Materialia, 2012, 66(10):793-796.
[10] BELMONTE M, NISTAL A, BOUTBIEN P, et al. Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers[J]. Scripta Materialia, 2016, 113:127-130.
[11] LIU L, WANG Y, LI X, et al. Enhancing toughness in boron carbide with reduced graphene oxide[J]. Journal of the American Ceramic Society, 2016, 99(1):257-264.
[12] KOVAL AČG AI'G KOVÁ A, SEDLÁK R, RUTKOWSKI P, et al. Mechanical properties of boron carbide+graphene platelet composites[J]. Ceramics International, 2016, 42(1):2094-2098.
[13] 张颖, 蒋明学, 张军战. 合成温度对碳热还原法合成碳化硅晶须形貌的影响[J]. 人工晶体学报, 2010, 39(2):369-374.
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 1