• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

蒸汽转化炉用Fe-Cr-Ni基奥氏体耐热合金的研究进展

洑阳成明, 郭晓峰, 巩建鸣

洑阳成明, 郭晓峰, 巩建鸣. 蒸汽转化炉用Fe-Cr-Ni基奥氏体耐热合金的研究进展[J]. 机械工程材料, 2018, 42(12): 1-8. DOI: 10.11973/jxgccl201812001
引用本文: 洑阳成明, 郭晓峰, 巩建鸣. 蒸汽转化炉用Fe-Cr-Ni基奥氏体耐热合金的研究进展[J]. 机械工程材料, 2018, 42(12): 1-8. DOI: 10.11973/jxgccl201812001
FUYANG Chengming, GUO Xiaofeng, GONG Jianming. Research Progress on Fe-Cr-Ni Based Austenitic Heat-Resistant Alloy Used in Steam Reformer Furnace[J]. Materials and Mechanical Engineering, 2018, 42(12): 1-8. DOI: 10.11973/jxgccl201812001
Citation: FUYANG Chengming, GUO Xiaofeng, GONG Jianming. Research Progress on Fe-Cr-Ni Based Austenitic Heat-Resistant Alloy Used in Steam Reformer Furnace[J]. Materials and Mechanical Engineering, 2018, 42(12): 1-8. DOI: 10.11973/jxgccl201812001

蒸汽转化炉用Fe-Cr-Ni基奥氏体耐热合金的研究进展

基金项目: 

国家重点研发计划项目(2017YFF0210401)

详细信息
    作者简介:

    洑阳成明(1994-),男,安徽芜湖人,硕士研究生

  • 中图分类号: TG142.2

Research Progress on Fe-Cr-Ni Based Austenitic Heat-Resistant Alloy Used in Steam Reformer Furnace

  • 摘要: 对蒸汽转化炉用Fe-Cr-Ni基奥氏体耐热合金的化学成分以及显微组织和性能在时效及服役过程中的演变规律进行了综述,介绍了Fe-Cr-Ni基奥氏体耐热合金在原始铸态、时效态、蠕变态以及服役态组织中各析出相的变化规律,展望了Fe-Cr-Ni基奥氏体耐热合金及其构件的未来研究方向。
    Abstract: The chemical composition and the microstructure and property evolution during aging and service of Fe-Cr-Ni based austenitic heat-resistant alloy for steam reformer furnace are reviewed. The precipitates evolution in as-cast, aging, creep and service state structure of Fe-Cr-Ni based austenitic heat-resistant alloy is described. The future study direction of Fe-Cr-Ni based austenitic heat-resistant alloy and its components is prospected.
  • [1] 高步新. 超大型天然气制合成气蒸汽转化炉工程技术研究[D]. 上海:华东理工大学, 2011.
    [2] 徐月亭. 天然气非催化部分氧化过程研究及系统分析[D]. 上海:华东理工大学, 2016.
    [3]

    DEWAR M P. Characterization and evaluation of aged 20Cr32Ni1Nb stainless steels[D]. Alberta:University of Alberta, 2013.

    [4] 安俊超. 多因素下乙烯裂解炉管焊接接头寿命预测研究[D]. 天津:天津大学,2011.
    [5]

    LIU C J, CHEN Y. Variations of the microstructure and mechanical properties of HP40Nb hydrogen reformer tube with time at elevated temperature[J]. Materials & Design, 2011, 32(4):2507-2512.

    [6] 沈利民. 多因素耦合的乙烯裂解炉管损伤分析与寿命预测[D]. 南京:南京工业大学, 2012.
    [7] 车俊铁, 于静. HK40和HP40高温炉管材料性能对比分析[J]. 工业炉, 2004, 26(4):7-9.
    [8] 陈涛, 陈学东, 刘春娇, 等. 离心铸造乙烯裂解炉管高温持久试验的金相组织影响[C]//压力容器先进技术——第八届全国压力容器学术会议论文集.合肥:中国机械工程学会压力容器分会, 2013:140-147.
    [9]

    KAYA A A. Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment:Ⅱ. Carburization and carbide transformations[J]. Materials Characterization, 2002, 49(1):23-34.

    [10]

    RAY A K, SINHA S K, TIWARI Y N, et al. Analysis of failed reformer tubes[J]. Engineering Failure Analysis, 2003, 10:351-362.

    [11]

    LEE J H, YANG W J, YOO W D, et al. Microstructural and mechanical property changes in HK40 reformer tubes after long term use[J]. Engineering Failure Analysis, 2009, 16:1883-1888.

    [12]

    ODANOVI AC'G Z, BLA AČG I AC'G I, VRA AČG ARI AC'G D, et al. Microstructural analysis as the indicator for suitability of weld repairing of the heat resistant Cr-Ni steel[J]. Revista de Metalurgia, 2010, 46(4):320-330.

    [13]

    BABAKR A M, AHMARI A A, JUMAYIAH K A, et al. Sigma phase formation and embrittlement of cast iron-chromium-nickel (Fe-Cr-Ni) alloys[J]. Journal of Minerals and Materials Characterization and Engineering, 2008, 7(2):127-145.

    [14]

    GONG J M, TU S T, YOON K B. Damage assessment and maintenance strategy of hydrogen reformer furnace tubes[J]. Engineering Failure Analysis, 1999, 6:143-153.

    [15]

    MAY I L, SILVEIRA T L, VIANNA C H. Criteria for the evaluation of damage and remaining life in reformer furnace tubes[J]. International Journal of Pressure Vessels and Piping, 1996, 66:233-241.

    [16]

    WU X Q, YANG Y S, ZHAN Q, et al. Variation in as cast and aged structures of centrifugally cast heat resistant steel solidified in an electromagnetic field and under different cooling conditions[J]. Materials Science and Technology, 1999, 15:725-730.

    [17]

    WU X Q, JING H M, ZHENG Y G, et al. The eutectic carbides and creep rupture strength of 25Cr20Ni heat-resistant steel tubes centrifugally cast with different solidification conditions[J]. Materials Science and Engineering:A, 2000, 293:252-260.

    [18]

    KIM Y J, LEE D G, JEONG H K, et al. High temperature mechanical properties of HK40-type heat-resistant cast austenitic stainless steels[J]. Journal of Materials Engineering and Performance, 2010, 19(5):700-704.

    [19]

    PENG B C, ZHANG H X, HONG J, et al. The effect of M23C6 on the high-temperature tensile strength of two austenitic heat-resistant steels:22Cr-25Ni-Mo-Nb-N and 25Cr-20Ni-Nb-N[J]. Materials Science and Engineering:A, 2011, 528:3625-3629.

    [20]

    SHANNON B E, JASKE C E, SMITH M C. Optimizing reformer tube life through advanced inspection and remaining life assessment[J]. Process Safety Progress, 2010, 29(4):299-304.

    [21]

    SHEN F Z, MA G X, LING X, et al. Two methods for assessment of residual life of HK-40 furnace tube[J]. Acta Metallurgica Sinica (English Letters),1999,12(1):105-112.

    [22]

    NAHM S H, YU K M, PARK J S, et al. Degradation evaluation of HK-40 steel using electrical resistivity[J]. International Journal of Modern Physics B,2003,17:1615-1620.

    [23]

    LAIGO J, CHRISTIEN F, GALL R L, et al. SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys[J]. Materials Characterization, 2008, 59:1580-1586.

    [24]

    NOORI S A, PRICE J W H. Case study of the use of API 581 on HK and HP material furnace tubes[J]. Journal of Pressure Vessel Technology, 2005, 127:49-54.

    [25]

    VOICU R, LACAZE J, ANDRIEU E, et al. Creep and tensile behaviour of austenitic Fe-Cr-Ni stainless steels[J]. Materials Science and Engineering:A, 2009, 510/511:185-189.

    [26]

    ALVINO A, RAMIRES D, TONTI A, et al. Influence of chemical composition on microstructure and phase evolution of two HP heat resistant stainless steels after long term plant-service aging[J]. Materials at High Temperatures, 2014, 31(1):2-11.

    [27]

    MOSTAFAEI M, SHAMANIAN M, PURMOHAMAD H, et al. Microstructural degradation of two cast heat resistant reformer tubes after long term service exposure[J]. Engineering Failure Analysis, 2011, 18:164-171.

    [28]

    PEREZ I U, JÚNIOR L N, BUENO L D O, et al. Short duration overheating in a steam reformer:Consequences to the catalyst tubes[J]. Journal of Failure Analysis and Prevention, 2013, 13:779-786.

    [29]

    ANDRADE A R, BOLFARINI C, FERREIRA L A M, et al. Influence of niobium addition on the high temperature mechanical properties of a centrifugally cast HP alloy[J]. Materials Science and Engineering:A, 2015, 628:176-180.

    [30]

    THOMAS C W, BORSHEVSKY M, MARSHALL A N. Assessment of thermal history of niobium modified HP50 reformer tubes by microstructural methods[J]. Materials Science and Technology, 1992, 8:855-861.

    [31]

    THOMAS C W, STEVENS K J, RYAN M J. Microstructure and properties of alloy HP50-Nb:Comparison of as cast and service exposed materials[J]. Materials Science and Technology, 1996, 12:469-475.

    [32]

    ALMEIDA L H D, RIBEIRO A F, MAY I L. Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes[J]. Materials Characterization, 2003, 49:219-229.

    [33]

    VOICU R, ANDRIEU E, POQUILLON D, et al. Microstructure evolution of HP40-Nb alloys during aging under air at 1000℃[J]. Materials Characterization, 2009, 60:1020-1027.

    [34]

    SWAMINATHAN J, GUGULOTH K, GUNJAN M, et al. Failure analysis and remaining life assessment of service exposed primary reformer heater tubes[J]. Engineering Failure Analysis, 2008, 15:311-331.

    [35]

    BONACCORSI L, GUGLIELMINO E, PINO R, et al. Damage analysis in Fe-Cr-Ni centrifugally cast alloy tubes for reforming furnaces[J]. Engineering Failure Analysis, 2014, 36:65-74.

    [36]

    BUCHANAN K G, KRAL M V. Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes[J]. Metallurgical and Materials Transactions A, 2012, 43:1760-1769.

    [37]

    BUCHANAN K G, KRAL M V, BISHOP C M. Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys[J]. Metallurgical and Materials Transactions A, 2014, 45:2014-3373.

    [38]

    KENIK E A, MAZIASZ P J, SWINDEMAN R W, et al. Structure and phase stability in a cast modified-HP austenite after long-term ageing[J]. Scripta Materialia, 2003, 49:117-122.

    [39]

    RAY A K, KUMAR S, KRISHNA G, et al. Microstructural studies and remnant life assessment of eleven years service exposed reformer tube[J]. Materials Science and Engineering:A, 2011, 529:102-112.

    [40]

    ALVINO A, LEGA D, GIACOBBE F, et al. Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions[J]. Engineering Failure Analysis, 2010, 17:1526-1541.

    [41]

    WANG W Z, XUAN F Z, WANG Z D, et al. Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy[J]. Materials and Design, 2011, 32(7):4010-4016.

    [42]

    SHEN L M, GONG J M, LIU H S. Carburisation layer evolution of Fe-Cr-Ni alloy in furnace after long term service:Experimental study and numerical prediction[J]. Materials at High Temperatures, 2014, 31(2):148-154.

    [43]

    SHEN L M, GONG J M, JIANG Y, et al. Damage prediction of HP40Nb steel with coupled creep and carburization based on the continuum damage mechanics[J]. Acta Metallurgica Sinica (English Letters), 2012, 25(4):279-286.

    [44]

    DAS S K, GHOSH R N, SONDHI S. Prediction of carbide free layer formation in Fe-Ni-Cr austenitic steel process heater tube[J]. Corrosion Engineering, Science and Technology, 2012, 47(2):121-124.

    [45]

    XIANG Y X, DENG M X, XUAN F Z. Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique[J]. Journal of Nondestructive Evaluation, 2014, 33:279-287.

    [46]

    ANDRADE A R, BOLFARINI C, FERREIRA L A M, et al. Titanium micro addition in a centrifugally cast HPNb alloy:High temperature mechanical properties[J]. Materials Science and Engineering:A, 2015, 636:48-52.

    [47]

    BORJALI S, ALLAHKARAM S R, KHOSRAVI H. Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition[J]. Materials and Design, 2012, 34:65-73.

    [48]

    CABALLERO F G, IMIZCOZ P, LOPEZ V, et al. Use of titanium and zirconium in centrifugally cast heat resistant steel[J]. Materials Science and Technology, 2013, 23(5):528-534.

    [49]

    NUNES F C, ALMEIDA L H D, DILLE J, et al. Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels[J]. Materials Characterization, 2007, 58:132-142.

    [50]

    ATTARIAN M, TAHERI A K. Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen[J]. Materials Science and Engineering:A, 2016, 659:104-118.

    [51]

    YAN J B, GAO Y M, YANG F, et al. Effect of tungsten on the microstructure evolution and mechanical properties of yttrium modified HP40Nb alloy[J]. Materials Science and Engineering:A, 2011, 529:361-369.

    [52]

    CHEN T, CHEN X D, YE J. Sulfur effects on high-temperature creep and fracture behavior of 25Cr35Ni-Nb alloys[J]. Journal of Pressure Vessel Technology, 2014,136:1-7.

    [53]

    RODRÍGUEZ J, HARO S, VELASCO A, et al. A metallographic study of aging in a cast heat-resisting alloy[J]. Materials Characterization, 2000, 45:25-32.

    [54]

    RODRÍGUEZ J, HARO S, VELASCO A, et al. Aging of cast Ni-base heat resisting alloy[J]. International Journal of Cast Metals Research, 2004, 17(3):188-192.

    [55]

    SHEN L M, GONG J M, JIANG Y, et al. Effects of aging treatment on microstructure and mechanical properties of Cr25Ni35Nb and Cr35Ni45Nb furnace tube steel[J]. Acta Metallurgica Sinica (English Letters),2011,24(3):235-242.

    [56] 沈利民, 巩建鸣, 唐建群, 等. Cr25Ni35Nb和Cr35Ni45Nb裂解炉管的抗高温渗碳能力[J]. 上海交通大学学报, 2010, 44(5):604-608.
    [57] 沈利民, 巩建鸣, 姜勇. 多因素耦合下Cr35Ni45Nb钢乙烯裂解炉管损伤数值模拟[J]. 材料工程, 2012, 12:77-82.
    [58]

    SRISUWAN N, EIDHED K, KREATSEREEKUL N, et al. The study of heat treatment effects on chromium carbide precipitation of 35Cr-45Ni-Nb alloy for repairing furnace tubes[J]. Metals, 2016, 6(1):26.

    [59]

    XIAO J C, ZHANG M C. Investigations on servicing damage mechanisms of Cr35Ni45Nb alloy under complex conditions[J].Journal of Materials Research,2016,31(14):2156-2163.

    [60] 宋若康, 张麦仓, 杜晨阳, 等. Cr35Ni45钢高温长期服役过程中的组织演化规律分析[J]. 稀有金属材料与工程, 2014, 43(7):1628-1632.
    [61] 彭以超, 张麦仓, 杜晨阳等. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1):11-20.
    [62]

    HOFFMAN J J, GAPINSKI G E. High temperature aging characteristics of 20Cr32Ni1Nb castings[C]//Corrosion 2000. Orlando:NACE International, 2000:17-20.

    [63]

    HOFFMAN J J, MAGNAN J. Cast 20Cr32Ni1Nb alloy aged mechanical property improvements via chemistry modifications[C]//Corrosion 2003.Houston:NACE International,2003:3469-3479.

    [64]

    KNOWLES D M, THOMAS C W, KEEN D J, et al. In service embrittlement of cast 20Cr32Ni1Nb components used in steam reformer applications[J]. International Journal of Pressure Vessels and Piping, 2004, 81:499-506.

    [65]

    MONOBE L S, SCHÖN C G. Characterization of the cold ductility degradation after aging in centrifugally cast 20Cr32Ni+Nb alloy tube[J]. International Journal of Pressure Vessels and Piping, 2009, 86:207-210.

    [66]

    MONOBE L S, SCHÖN C G. Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni+Nb alloy tube in the ‘as cast’ and aged states[J]. Journal of Materials Research and Technology, 2013, 2(2):195-201.

    [67]

    CHEN Q Z, THOMAS C W, KNOWLES D M. Characterisation of 20Cr32Ni1Nb alloys in as-cast and ex-service conditions by SEM, TEM and EDX[J]. Materials Science and Engineering:A, 2004, 374:398-408.

    [68]

    SOARES G D, ALMEIDA L H D, SILVEIRA T L D, et al. Niobium additions in HP heat-resistant cast stainless steels[J]. Materials Characterization, 1992, 29(3):387-396.

    [69]

    DEWAR M P, ADRIAN G. Correlation between experimental and calculated phase fractions in aged 20Cr32Ni1Nb austenitic stainless steels Containing nitrogen[J]. Metallurgical and Materials Transactions A, 2013, 44:627-639.

    [70]

    SHI S, LIPPOLD J C. Microstructure evolution during service exposure of two cast, heat-resisting stainless steels:HP-Nb modified and 20-32Nb[J]. Materials Characterization, 2008, 59:1029-1040.

    [71]

    GUO X F, JIA X K, GONG J M, et al. Effect of long-term aging on microstructural stabilization and mechanical properties of 20Cr32Ni1Nb steel[J]. Materials Science and Engineering:A, 2017, 690:62-70.

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-10-24
  • 刊出日期:  2018-12-19

目录

    /

    返回文章
    返回