• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

原位自生非连续颗粒增强钛基复合材料的组织和力学性能

罗贤晖, 刘品旺, 宋静雯, 黄光法

罗贤晖, 刘品旺, 宋静雯, 黄光法. 原位自生非连续颗粒增强钛基复合材料的组织和力学性能[J]. 机械工程材料, 2018, 42(12): 31-35,41. DOI: 10.11973/jxgccl201812007
引用本文: 罗贤晖, 刘品旺, 宋静雯, 黄光法. 原位自生非连续颗粒增强钛基复合材料的组织和力学性能[J]. 机械工程材料, 2018, 42(12): 31-35,41. DOI: 10.11973/jxgccl201812007
LUO Xianhui, LIU Pinwang, SONG Jingwen, HUANG Guangfa. Microstructure and Mechanical Properties of In-situ Synthesized Discontinuous Particles Reinforced Titanium Matrix Composite[J]. Materials and Mechanical Engineering, 2018, 42(12): 31-35,41. DOI: 10.11973/jxgccl201812007
Citation: LUO Xianhui, LIU Pinwang, SONG Jingwen, HUANG Guangfa. Microstructure and Mechanical Properties of In-situ Synthesized Discontinuous Particles Reinforced Titanium Matrix Composite[J]. Materials and Mechanical Engineering, 2018, 42(12): 31-35,41. DOI: 10.11973/jxgccl201812007

原位自生非连续颗粒增强钛基复合材料的组织和力学性能

基金项目: 

国家自然科学基金资助项目(51371114)

详细信息
    作者简介:

    罗贤晖(1992-),男,江西上饶人,硕士研究生

  • 中图分类号: TB333

Microstructure and Mechanical Properties of In-situ Synthesized Discontinuous Particles Reinforced Titanium Matrix Composite

  • 摘要: 以海绵钛、镧粉、TiB2粉和石墨粉为原料,通过原位反应分别制备得到1%(体积分数,下同)La2O3、5%TiB+1%La2O3、5%TiC+1%La2O3等3种增强体增强钛基复合材料,研究了复合材料的显微组织和力学性能,并与相同工艺所得纯钛的进行了对比。结果表明:复合材料的基体组织为α-Ti,原位生成的La2O3呈颗粒状或短棒状,TiB呈短纤维状,并沿锻造方向排列,TiC呈等轴状和不规则形状;所得钛基复合材料的硬度、抗拉强度和屈服强度均显著高于纯钛的,断后伸长率低于纯钛的。
    Abstract: Titanium matrix composites reinforced with three reinforcements of 1vol%La2O3,5vol%TiB+1vol%La2O3 and 5vol%TiC+1vol%La2O3, respectively, were prepared by in-situ reactions with sponge titanium, lanthanum powder, titanium diboride powder and graphite powder as raw materials. The microstructure and mechanical properties of the composites were studied and compared with those of pure titanium prepared by the same process. The results show that the matrix microstructure of the composites consisted of α-Ti. The in-situ synthesized La2O3 was granular or short-rob like, the TiB was short-fiber like and distributed along the forging direction, and the TiC was equiaxed or irregular shape. The hardness, tensile strength and yield strength of the obtained titanium matrix composites were higher than those of the pure titanium, while the elongation was lower than that of the pure titanium.
  • [1]

    HUANG G, HAN Y, GUO X, et al. Effects of extrusion ratio on microstructural evolution and mechanical behavior of in situ synthesized Ti-6Al-4V composites[J]. Materials Science and Engineering:A, 2017, 688:155-163.

    [2]

    QIU P, LI H, SUN X, et al. Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB+TiC+La2O3)/Ti6Al4V composites[J]. Journal of Alloys and Compounds, 2017, 699:874-881.

    [3] 韩远飞, 邱培坤, 孙相龙, 等. 非连续颗粒增强钛基复合材料制备技术与研究进展[J]. 航空制造技术,2016,59(15):62-74.
    [4] 吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4):139-146.
    [5] 邝玮,王敏敏,李九霄,等.原位自生(TiB+La2O3)/TC4钛基复合材料的显微组织和力学性能[J]. 机械工程材料, 2015, 39(2):67-72.
    [6]

    HUANG L J, GENG L, LI A B, et al. In situ TiBw/Ti-6Al-4V composites with novel reinforcement architecture fabricated by reaction hot pressing[J]. Scripta Materialia, 2009, 60(11):996-999.

    [7]

    MORSI K, PATEL V V. Processing and properties of titanium-titanium boride (TiBw) matrix composites-A review[J]. Journal of Materials Science, 2007, 42(6):2037-2047.

    [8]

    TJONG S C, MAI Y W. Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008, 68(3/4):583-601.

    [9]

    GENG L, NI D R, ZHANG J, et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites[J]. Journal of Alloys and Compounds, 2008, 463(1/2):488-492.

    [10]

    GUO X, WANG L, WANG M, et al. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites[J]. Acta Materialia, 2012, 60(6/7):2656-2667.

    [11]

    XIAO L, LU W, QIN J, et al. Creep behaviors and stress regions of hybrid reinforced high temperature titanium matrix composite[J]. Composites Science and Technology, 2009, 69(11/12):1925-1931.

    [12]

    XIAO L, LU W J, LI Y G, et al. Thermal stability of in situ synthesized high temperature titanium matrix composites[J]. Journal of Alloys and Compounds,2009,467(1/2):135-141.

    [13]

    HALDAR B, KARMAKAR S, SAHA P, et al. In situ multicomponent MMC coating developed on Ti-6Al-4V substrate[J]. Surface Engineering, 2014, 30(4):256-262.

    [14] 潘红波, 唐获, 胡水平, 等. 热分析法测量相变温度的研究[J]. 物理测试, 2008, 26(6):43-46.
    [15] 赵永庆,周廉.钛合金基础性问题研究[J].金属学报,2002(增刊1):25-29.
    [16] 吕维洁,张荻.原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社, 2005.
    [17] 李玉涛,耿林,徐斌,等.TC11钛合金相变点的测定与分析[J].稀有金属,2006,30(2):231-235.
    [18] 马凤仓.热加工对原位自生钛基复合材料组织和力学性能影响的研究[D].上海:上海交通大学,2006.
    [19] 毛小南. TiC颗粒增强钛基复合材料的内应力对材料机械性能的影响[D].西安:西北工业大学,2004.
    [20]

    ZHANG C J, KONG F T, XIAO S L, et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements[J]. Materials Science and Engineering:A, 2012, 548:152-160.

    [21]

    GONG L, KINLOCH I A, YOUNG R J, et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J].Advanced Materials,2010,22(24):2694-2697.

计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-26
  • 修回日期:  2018-09-04
  • 刊出日期:  2018-12-19

目录

    /

    返回文章
    返回