Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy
-
摘要: 采用甩带法制备出新型Fe60Cr5Mo2Ni2W2Mn1C4Si7B17非晶合金,在室温、不同峰值载荷(3,5,7,9,12 mN)和不同加载速率(1,2,3,4,5 mN·s-1)下对此非晶合金进行纳米压痕试验,研究了加载速率和峰值载荷对其弹性模量、纳米压痕硬度和蠕变行为的影响。结果表明:试验合金为完全非晶态,其纳米压痕硬度和弹性模量均较高;随着峰值载荷的增大(即压入深度的增大),试验合金的纳米压痕硬度减小,表现出较明显的尺寸效应,弹性模量略有降低;随着加载速率的增加,纳米压痕硬度和弹性模量均增大;在纳米压痕试验的保载阶段,试验合金发生蠕变,其最大蠕变位移随峰值载荷或加载速率的增加而增大,蠕变应力指数则随峰值载荷的增加或加载速率的减小而增大。Abstract: A new Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 amorphous alloy was prepared by melt-spinning method. The nanoindentation tests were conducted on the alloy at room temperature under different peak loads (3, 5, 7, 9, 12 mN) and at different loading rates (1, 2, 3, 4, 5 mN·s-1). The effects of loading rate and peak load on the elastic modulus, nanoindentation hardness and creep behavior were studied. The results show that the tested alloy was completely amorphous with relatively high nanoindentation hardness and high elastic modulus. With the peak load increasing (ie., the indentation depth increasing), the nanoindentation hardness of the tested alloy decreased, indicating a relatively obvious size effect, and the elastic modulus decreased slightly. With the increase of loading rate, the nanoindentation hardness and elastic modulus increased. During the holding load stage of the nanoindentation test, the tested alloy creeped. The maximum creep displacement increased with the peak load or loading rate increasing, and the creep stress exponent increased with the peak load increasing or the loading rate decreasing.
-
-
[1] TREXLER M M, THADHANI N N. Mechanical properties of bulk metallic glasses[J]. Progress in Materials Science, 2010, 55(8):759-839.
[2] CHAO Q, WANG Q, DONG Y. Dynamic mechanical behavior of a Zr-based bulk metallic glass during glass transition and crystallization[J]. Rare Metals, 2009, 28(1):72-76.
[3] ZHANG G P, LIU Y, ZHANG B. Effect of annealing close to Tg on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications[J]. Scripta Materialia, 2006, 54(5):897-901.
[4] WANG W M, GEBERT A, ROTH S, et al. Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys[J]. Journal of Alloys and Compounds,2008,459(1/2):203-208.
[5] HUANG Y J, GUO Y Z, FAN H B, et al. Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance[J]. Materials Letters, 2012, 89:229-232.
[6] SHEN J, CHEN Q J, SUN J F, et al. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy[J]. Applied Physics Letters, 2005,86(15):151907.
[7] 庄法坤, 涂善东, 周帼彦,等. 不同小试样测量蠕变性能的比较研究[J]. 机械工程学报, 2015, 51(6):9-18. [8] 郭荻子, 林鑫, 赵永庆,等. 纳米压痕方法在材料研究中的应用[J]. 材料导报, 2011, 25(13):10-14. [9] 徐宏扬, 柯海波, 黄火根,等. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究[J]. 金属学报, 2017,53(7):817-823. [10] RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation[J].Acta Materialia,2012,60(9):3953-3964.
[11] ALIAGA L C R, FORNELL BERINGUES J, SURIÑACH S, et al. Comparative study of nanoindentation on melt-spun ribbon and bulk metallic glass with Ni60Nb37B3 composition[J]. Journal of Materials Research, 2013, 28(19):2740-2746.
[12] WEI B C, ZHANG T H, LI W H. Indentation creep behavior in Ce-based bulk metallic glasses at room temperature[J]. Materials Transactions, 2005, 46(12):2959-2962.
[13] SUN B A, WANG W H. The fracture of bulk metallic glasses[J]. Progress in Materials Science,2015,74:211-307.
[14] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展,2013,33(5):177-351. [15] WEI Y G, WANG X Z, ZHAO M H. Size effect measurement and characterization in nanoindentation test[J]. Journal of Materials Research, 2004, 19(1):208-217.
[16] GAO H J, HUANG Y G. Geometrically necessary dislocation and size-dependent plasticity[J]. Scripta Materialia, 2003, 48(2):113-118.
[17] MA Y, PENG G J, FENG Y H, et al.Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. Materials Science and Engineering:A,2016,651:548-555.
[18] BOWER A F, FLECK N A, NEEDLEMAN A. Indentation of a power law creeping solid[J]. Proceedings of the Royal Society of London A, 1993, 441:97-124.
[19] JOHNSON W L, LU J, DEMETRIOU M D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids:A self consistent dynamic free volume model[J]. Intermetallics, 2002, 10(11):1039-1046.
[20] ARGON A S. Plastic deformation in metallic glasses[J]. Acta Metallurgica, 1979, 27:47-58.
[21] 张长青. Fe-Ni-P-B合金的深过冷凝固组织及力学性能研究[D].北京:清华大学,2007.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 0