高级检索
    郑涵文, 疏小勇, 李洋, 赵建平. Fe60Cr5Mo2Ni2W2Mn1C4Si7B17非晶合金的纳米压痕力学性能[J]. 机械工程材料, 2018, 42(12): 36-41. DOI: 10.11973/jxgccl201812008
    引用本文: 郑涵文, 疏小勇, 李洋, 赵建平. Fe60Cr5Mo2Ni2W2Mn1C4Si7B17非晶合金的纳米压痕力学性能[J]. 机械工程材料, 2018, 42(12): 36-41. DOI: 10.11973/jxgccl201812008
    ZHENG Hanwen, SHU Xiaoyong, LI Yang, ZHAO Jianping. Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy[J]. Materials and Mechanical Engineering, 2018, 42(12): 36-41. DOI: 10.11973/jxgccl201812008
    Citation: ZHENG Hanwen, SHU Xiaoyong, LI Yang, ZHAO Jianping. Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy[J]. Materials and Mechanical Engineering, 2018, 42(12): 36-41. DOI: 10.11973/jxgccl201812008

    Fe60Cr5Mo2Ni2W2Mn1C4Si7B17非晶合金的纳米压痕力学性能

    Nanoindentation Mechanical Properties of Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 Amorphous Alloy

    • 摘要: 采用甩带法制备出新型Fe60Cr5Mo2Ni2W2Mn1C4Si7B17非晶合金,在室温、不同峰值载荷(3,5,7,9,12 mN)和不同加载速率(1,2,3,4,5 mN·s-1)下对此非晶合金进行纳米压痕试验,研究了加载速率和峰值载荷对其弹性模量、纳米压痕硬度和蠕变行为的影响。结果表明:试验合金为完全非晶态,其纳米压痕硬度和弹性模量均较高;随着峰值载荷的增大(即压入深度的增大),试验合金的纳米压痕硬度减小,表现出较明显的尺寸效应,弹性模量略有降低;随着加载速率的增加,纳米压痕硬度和弹性模量均增大;在纳米压痕试验的保载阶段,试验合金发生蠕变,其最大蠕变位移随峰值载荷或加载速率的增加而增大,蠕变应力指数则随峰值载荷的增加或加载速率的减小而增大。

       

      Abstract: A new Fe60Cr5Mo2Ni2W2Mn1C4Si7B17 amorphous alloy was prepared by melt-spinning method. The nanoindentation tests were conducted on the alloy at room temperature under different peak loads (3, 5, 7, 9, 12 mN) and at different loading rates (1, 2, 3, 4, 5 mN·s-1). The effects of loading rate and peak load on the elastic modulus, nanoindentation hardness and creep behavior were studied. The results show that the tested alloy was completely amorphous with relatively high nanoindentation hardness and high elastic modulus. With the peak load increasing (ie., the indentation depth increasing), the nanoindentation hardness of the tested alloy decreased, indicating a relatively obvious size effect, and the elastic modulus decreased slightly. With the increase of loading rate, the nanoindentation hardness and elastic modulus increased. During the holding load stage of the nanoindentation test, the tested alloy creeped. The maximum creep displacement increased with the peak load or loading rate increasing, and the creep stress exponent increased with the peak load increasing or the loading rate decreasing.

       

    /

    返回文章
    返回