Effect of δ-ferrite on Susceptibility to Hydrogen Embrittlement of 304 Austenitic Stainless Steel in High-Pressure Hydrogen
-
摘要: 将304奥氏体不锈钢在1 050℃进行固溶处理以改变δ铁素体组织的含量,并分别在高压氢气和氩气环境中进行了慢应变速率拉伸和疲劳裂纹扩展试验,研究了δ铁素体对试验钢氢脆敏感性的影响。结果表明:试验钢原始组织中存在较多的δ铁素体,经1 050℃固溶处理后,δ铁素体几乎完全消失;在高压氢气环境中,δ铁素体的存在降低了试验钢的塑性,增强了其氢脆敏感性;δ铁素体的存在为氢提供了快速扩散的通道,从而提高了试验钢的疲劳裂纹扩展速率。Abstract: 304 austenitic stainless steel was treated by solid solution at 1 050℃ to change the content of δ-ferrite structure, and then the slow strain rate tensile test and fatigue crack growth test were carried out in high-pressure hydrogen and argon, respectively. The effect of δ-ferrite on the susceptibility to hydrogen embrittlement of the tested steel was investigated. The results show that a ralatively large amount of δ-ferrite existed in original structure of the tested steel. After solid solution at 1 050℃, the δ-ferrite almost disappeared. In high-pressure hydrogen, the existence of δ-ferrite reduced the plasticity of the tested steel and enhanced the susceptibility to hydrogen embrittlement. The presence of δ-ferrite provided a fast diffusion channel for hydrogen and improved the fatigue crack growth rate of the tested steel.
-
Keywords:
- austenitic stainless steel /
- δ-ferrite /
- hydrogen embrittlement /
- fatigue crack
-
-
[1] SAN MARCHI C, SOMERDAY B P, ROBINSON S L. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures[J]. International Journal of Hydrogen Energy, 2007, 32(1):100-116.
[2] MINE Y, NARAZAKI C, MURAKAMI K, et al. Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth[J]. International Journal of Hydrogen Energy, 2009, 34(2):1097-1107.
[3] ELIEZER D, CHAKRAPANI D G, ALTSTETTER C J, et al. The influence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel[J]. Metallurgical Transactions A, 1979, 10(7):935-941.
[4] LIU R, NARITA N, ALTSTETTER C, et al. Studies of the orientations of fracture surfaces produced in austenitic stainless steels by stress-corrosion cracking and hydrogen embrittlement[J]. Metallurgical Transactions A, 1980, 11(9):1563-1574.
[5] VENNETT R M, ANSELL G S. The effect of high-pressure hydrogen upon the tensile properties and fracture behavior of 304L stainless steel[J]. Transactions of ASM, 1967, 60(2):242-251.
[6] MARTIN M, WEBER S, THEISEN W, et al. Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel[J]. International Journal of Hydrogen Energy, 2011, 36(24):15888-15898.
[7] MICHLER T, MARCHI C S, NAUMANN J, et al. Hydrogen environment embrittlement of stable austenitic steels[J]. International Journal of Hydrogen Energy, 2012, 37(21):16231-16246.
[8] MICHLER T, NAUMANN J. Hydrogen environment embrittlement of austenitic stainless steels at low temperatures[J]. International Journal of Hydrogen Energy, 2008, 33(8):2111-2122.
[9] HAN G, HE J, FUKUYAMA S, et al. Effect of strain induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures[J]. Acta Materialia, 1998, 46(13):4559-4570.
[10] ZHANG L, WEN M, IMADE M, et al. Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Acta Materialia, 2008, 56(14):3414-3421.
[11] ZHANG L, IMADE M, AN B, et al. Internal reversible hydrogen embrittlement of austenitic stainless steels based on type 316 at low temperatures[J]. Journal of the Iron & Steel Institute of Japan, 2013, 99(4):294-301.
[12] ZHANG L, LI Z Y, ZHENG J Y, et al. Influence of low temperature prestrain on hydrogen gas embrittlement of metastable austenitic stainless steels[J]. International Journal of Hydrogen Energy, 2013, 38(25):11181-11187.
[13] MYLLYKOSKI L, SUUTALA N. Effect of solidification mode on hot ductility of austenitic stainless steel[J]. Metals Technology, 1983, 10(1):453-460.
[14] RHO B S, HONG H U, NAM S W. The fatigue crack initiation at the interface between matrix and δ-ferrite in 304L stainless steel[J].Scripta Materialia,1998,39(10):1407-1412.
[15] 姜勇, 巩建鸣, 周荣荣, 等. 氢对304L奥氏体不锈钢力学性能的影响[J]. 机械工程材料, 2009, 33(11):15-18. [16] PERNG T P, ALTSTETTER C J. Effects of deformation on hydrogen permeation in austenitic stainless steels[J]. Acta Metallurgica, 1986, 34(9):1771-1781.
[17] PERNG T P, JOHNSON M, ALTSTETTER C J. Influence of plastic deformation on hydrogen diffusion and permeation in stainless steels[J]. Acta Metallurgica, 1989, 37(12):3393-3397.
[18] MURAKAMI Y, KANAZAKI T, MINE Y, et al. Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels[J]. Metallurgical & Materials Transactions A, 2008, 39(6):1327-1339.
[19] MATSUOKA S, TSUTSUMI N, MURAKAMI Y. Effects of hydrogen on fatigue crack growth and stretch zone of 0.08mass%C low carbon steel pipe[J]. Transactions of the Japan Society of Mechanical Engineers A, 2008, 74(748):1528-1537.
[20] MATSUOKA S, TANAKA H, HOMMA N, et al. Influence of hydrogen and frequency on fatigue crack growth behavior of Cr-Mo steel[J]. International Journal of Fracture, 2011, 168(1):101-112.
计量
- 文章访问数: 8
- HTML全文浏览量: 0
- PDF下载量: 2