Thermal Corrosion Behavior in Mixed Molten Salt of Different Alkali Metals of 12Cr1MoVG Steel for Heat Pipe in Waste Incinerator
-
摘要: 采用腐蚀动力学方法,结合腐蚀表面形貌观察和微区成分分析,研究了垃圾焚烧炉热管用12Cr1MoVG钢在KCl+NaCl、KCl+K2SO4、NaCl+Na2SO4和K2SO4+Na2SO4(物质的量比均为1∶1)等混合熔盐中的热腐蚀行为。结果表明:试验钢在KCl+NaCl熔盐中的腐蚀质量变化和腐蚀深度大于在K2SO4+Na2SO4熔盐中的,腐蚀层中产生了大小不一的孔洞且氯元素已渗入基体,碱金属氯盐对试验钢的腐蚀作用大于碱金属硫酸盐的;试验钢在KCl+K2SO4熔盐中的腐蚀质量变化和腐蚀深度大于在NaCl+Na2SO4熔盐中的,腐蚀层较为疏松,钾盐对试验钢的腐蚀能力强于钠盐的;试验钢的腐蚀速率由大到小按熔盐排序为KCl+NaCl、K2SO4+Na2SO4、KCl+K2SO4、NaCl+Na2SO4。
-
关键词:
- 12Cr1MoVG钢 /
- 熔盐腐蚀 /
- 碱金属 /
- 氯盐 /
- 硫酸盐
Abstract: Thermal corrosion behavior of 12Cr1MoVG steel for heat pipe in waste incinerator in mixed molten salts were studied by corrosion kinetic method, corrosion surface observation and micro area composition analysis; the mixed molten salts were KCl+NaCl, KCl+K2SO4, NaCl+Na2SO4 and K2SO4+Na2SO4, respectively, whose molar ratios were all 1:1. The results show that the corrosion mass change and corrosion depth of the tested steel in molten salt of KCl+NaCl were higher than those in molten salt of K2SO4+Na2SO4, holes of different size were produced in the corrosion layer and chlorine already penetrated into the substrate. The corrosion effect of alkali metal chloride salt on the tested steel was greater than that of alkali metal sulfate salt. The corrosion mass change and corrosion depth of the tested steel in KCl+K2SO4 molten salt were greater than those in NaCl+Na2SO4 molten salt and the corrosion layer was looser. The corrosion ability of the potassium salt to the tested steel was stronger than that of the sodium salt. The corrosion rate of the tested steel from large to small was listed as follows:KCl+NaCl, K2SO4+Na2SO4, KCl+K2SO4, NaCl+NaSO4.-
Keywords:
- 12Cr1MoVG steel /
- molten salt corrosion /
- alkali metal /
- chloride salt /
- sulfate salt
-
-
[1] 李时宇,刘汝杰,屠健.生活垃圾焚烧烟气净化处理技术[J].电站系统工程,2017,33(6):83-84. [2] 张倩,徐海云.生活垃圾焚烧处理技术现状及发展建议[J].环境工程,2012,30(2):79-81. [3] 李季,张铮,杨学民,等.城市生活垃圾热解特性的TG-DSC分析[J].化工学报,2002,21(7):759-764. [4] NATESAN K, PARK J H. Fireside and steamside corrosion of alloys for USC plants[J]. International Journal of Hydrogen Energy, 2007, 32(16):3689-3697.
[5] ALLEN D J, HARVEY B, BRETT S J. "FOURCRACK":An investigation of the creep performance of advanced high alloy steel welds[J].International Journal of Pressure Vessels and Piping,2007,84(1/2):104-113.
[6] FOURNIER B, SAUZAY M, CAES C, et al. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I:Effect of tensile holding period on fatigue lifetime[J]. International Journal of Fatigue, 2007, 30(4):68-75.
[7] 董登超,张珂,洪慧敏,等.某电厂锅炉用12Cr1MoVG钢过热器管爆管的原因[J].机械工程材料,2016,40(7):114-118. [8] TILLMAN D A, DUONG D, MILLER B. Chlorine in solid fuels fired in pulverized fuel boilers:Sources, forms, reactions, and consequences:A literature review[J]. Energy and Fuels, 2009, 23(7):3379-3391.
[9] FOLKESON N, PETTERSSON J, PETTERSSON C, et al. Fireside corrosion of stainless and low alloyed steels in a waste-fired CFB boiler:The effect of adding sulphur to the fuel[J]. Materials Science Forum, 2008, 595:289-297.
[10] 刘倩倩,句光宇,王志武.12Cr1MoVG钢再热器管焊接接头断裂原因分析[J].金属热处理,2015,40(12):181-184. [11] LIU S, LIU Z, WANG Y, et al. A comparative study on the high temperature corrosion of TP347H stainless steel, C22 alloy and laser-cladding C22 coating in molten chloride salts[J]. Corrosion Science, 2014, 83:396-408.
[12] 胡智华,李宗宝,朱越平.含氯废料焚烧氯化氢的形成与防腐措施研究[J].环境科学与技术,2005,12(2):7-8. [13] 李琰,鲁金涛,杨珍,等.锅炉奥氏体不锈钢在模拟煤灰和高硫烟气环境中腐蚀行为的研究[J].动力工程学报,2017,37(2):156-162. [14] 王迪.垃圾焚烧余热锅炉高温腐蚀及其防腐方法研究[J].电站系统工程,2014,30(4):75-76. [15] 王永征,张科,姜磊,等.生物质混煤燃烧过程中硫氯协同腐蚀特性研究[J].高校化学工程学报,2015,29(6):1422-1429. [16] 武岳,王永征,栗秀娟,等.生物质混煤燃烧锅炉过热器受热面金属氯腐蚀特性[J].动力工程学报,2014,34(9):690-695. [17] METSJOKI J,HUTTUNEN-SAARIVIRTA E, LEPIST T. Elevated temperature corrosion of uncoated and aluminized 9-12% Cr boiler steels beneath KCl deposite[J].Fuel,2014,133(20):173-181.
[18] YUAN L, WANG H M. Hot corrosion behaviors of a Cr13Ni5Si2-based metal silicide alloy in Na2SO4+25wt.%K2SO4 and Na2SO4+25wt.% NaCl molten salts[J].Intermetallics, 2010,18(12):324-329.
[19] ZHENG X, RAPP R A. Electrochemical impedance of a platinum electrode in fused Na2SO4 melts in SO2-O2 environments[J]. Journal of the Electrochemical Society, 1993, 140(10):2857-2862.
[20] ZHAO S, XIE X, SMITH G D. The oxidation behavior of the new nickel-based superalloy Inconel 740 with and without Na2SO4 deposit[J]. Surface and Coatings Technology, 2004, 185(2/3):178-183.
[21] ANTUNES R A, DE OLIVEIRA M C L. Corrosion in biomass combustion:A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies[J]. Corrosion Science, 2013, 76:6-26.
[22] YANG X, LI S, QI H. Effect of high-temperature hot corrosion on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy[J]. International Journal of Fatigue, 2015, 70(2):106-113.
[23] CLAUBERG E, JANOVĚC J, UEBING C, et al. Surface segregation on Fe-25%Cr-2%Ni-0.14%Sb-N, S (100) single crystal surfaces[J]. Applied Surface Science, 2000, 161(1/2):35-46.
[24] 李勇. 燃煤过程中碱金属赋存、迁移规律数值模拟及试验研究[D].南京:东南大学, 2006:26-28.
计量
- 文章访问数: 7
- HTML全文浏览量: 0
- PDF下载量: 0