Precipitation Behavior of σ Phase in ER316L Austenitic Stainless Steel and Its Wire Rod High-Speed Wire Rolling
-
摘要: 通过固溶处理及高温压缩试验研究了固溶温度和应变速率对ER316L奥氏体不锈钢中σ相析出行为的影响,在此基础上制定了盘条高线轧制工艺的粗中轧参数并进行了盘条高线轧制,研究了盘条的组织及拉伸性能。结果表明:试验钢的显微组织由奥氏体相和σ相组成,σ相含量随固溶温度的降低或应变速率的增大而增加;为防止σ相的大量析出,在试验钢轧制过程中应保持较低的应变速率,且轧制温度应设置在1 000℃及以上。在此参数下轧制所得盘条中的σ相体积分数小于3%,抗拉强度均值为640.2 MPa,伸长率均值为48.7%,表现出较好的拉拔性能。Abstract: The effects of solid solution temperature and strain rate on the precipitation behavior of σ phase in ER316L austenitic stainless steel were investigated by solid solution treatment and high-temperature compression test. Based on the testing results, the rough and medium rolling parameters in high-speed wire rolling process of wire rod were designed and the high-speed wire rolling of wire rod was done. The microstructure and tensile properties of the wire rod were studied. The results show that the microstructure of the tested steel consisted of austenite phase and σ phase. The content of σ phase increased with decreasing solid solution temperature or increasing strain rate. In order to prevent the large precipitation of σ phase, the strain rate should keep slow and the rolling temperature should be set at 1 000℃ and above during the rolling of the tested steel. The volume fraction of σ phase in the wire rod rolled by the designed process was lower than 3%, the average tensile strength was 640.2 MPa and the average elongation was 48.7%; the wire rod illustrated a relatively good drawing performance.
-
-
[1] 唐律今, 刘宇. 不锈钢线材的专业化生产[J]. 金属制品, 2000, 26(6):32-36. [2] 廖建军. 不锈钢线材表面处理技术及应用[J]. 金属制品, 2008, 34(5):24-28. [3] SOLOMON N, SOLOMON I. Effect of deformation-induced phase transformation on AISI 316 stainless steel corrosion resistance[J]. Engineering Failure Analysis, 2017, 79:865-875.
[4] 董兆荣. 高速钢复合辊环在线材轧制中的应用[J]. 轧钢, 2008, 25(2):55-56. [5] 王辉绵, 辛建卿, 张增武,等. 奥氏体不锈钢线材生产工艺研究[J]. 轧钢, 2007, 24(4):30-33. [6] ALAMU O J, AIYEDUN P O, KAREEM A, et al. Effect of AISI316 stainless steel geometry on temperature distribution during hot rolling at high reduction[J]. Advanced Materials Research, 2007, 18/19:195-200.
[7] CHASTELL D J, FLEWITT P E J. The formation of the σ phase during long term high temperature creep of type 316 austenitic stainless steel[J]. Materials Science & Engineering, 1979, 38(2):153-162.
[8] 刘宝胜, 李国栋, 卫英慧. 奥氏体不锈钢中σ相析出及其对性能影响的研究进展[J]. 钢铁研究学报, 2014, 26(1):1-6. [9] LIN D Y, CHANG T C, LIU G L. Effect of Si contents on the growth behavior of σ phase in SUS 309L stainless steels[J]. Scripta Materialia, 2003, 49(9):855-860.
[10] 王永强, 孙立, 李娜,等. Fe20Cr9Ni铸造奥氏体不锈钢中σ相的析出动力学[J]. 钢铁研究学报, 2016, 28(7):67-73. [11] 阮士朋, 赵爱民, 郭明仪,等. 方坯表面裂纹在线材轧制过程中的演变规律研究[J]. 热加工工艺, 2017(9):79-81. [12] 曾莉, 张威, 王岩. 超级奥氏体不锈钢偏析行为及元素再分配规律[J]. 材料热处理学报, 2015, 36(4):232-238. [13] 边书, 张玉妥, 王承志. Fe-Cr-Ni系相图计算[J]. 沈阳理工大学学报, 2011, 30(6):17-21. [14] 宾远红, 李培芬, 骆亍,等. 压缩变形对双相不锈钢σ相析出行为的影响[J]. 金属热处理, 2015, 40(11):64-67. [15] 赵德文, 铁维麟. 轧制应变速率参数ε的精确计算方法[J]. 应用科学学报, 1995, 13(1):103-108.
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 1