Effect of Welding Speed on Microstructure and Mechanical Properties of Friction Stir Welded Joint of Dissimilar Magnesium/Aluminum Alloys
-
摘要: 在不同焊接速度(23.5,47.5,75.0 mm·min-1)下采用搅拌摩擦焊技术对AZ31镁合金和6061铝合金进行对接焊,研究了焊接速度对接头显微组织和力学性能的影响。结果表明:不同速度焊接后,接头焊核区存在条带状组织,焊核区晶粒发生细化;在前进侧焊核区/热机影响区界面处生成了少量金属间化合物Al3Mg2和Al12Mg17;随着焊接速度的降低,各区域的晶粒尺寸有所增大,材料混合均匀程度有所增强;随着焊接速度的增大,后退侧不同区域的硬度均先降后增,前进侧的硬度整体呈增大趋势,接头的抗拉强度和屈服强度均有所下降;拉伸断裂均发生在接头前进侧焊核区/热机影响区界面处,断裂模式均为脆性断裂。Abstract: AZ31 magnesium alloy and 6061 aluminum alloy were butt welded by friction stir welding at different welding speeds (23.5, 47.5, 75.0 mm·min-1). The effects of welding speed on the microstructure and mechanical properties of the joint were investigated. The results show that stripped structures existed in the nugget zone of the joints welded at different speeds. The grains in nugget zone were refined. A small amount of Al3Mg2 and Al12Mg17 metallic compounds formed at interfaces between nugget zone and thermomechanically affected zone on advancing side. With decreasing welding speed, the grain size and the material mixing uniformity in different zones both increased slightly. With increasing welding speed, the hardness in different zones on retreating side decreased first and then increased, while that on advancing side showed an increase trend; the tesile strength and yield strength of the joint both decreased. The joint fractured at the interface between nugget zone and thermomechanically affected zone on advancing side. The fracture mode was brittle.
-
-
[1] 付娟, 赵勇, 严铿, 等. 复合搅拌摩擦点焊旋转半径对接头组织和性能的影响[J]. 江苏科技大学学报(自然科学版), 2011, 25(5):423-426. [2] 陈振华. 镁合金(精)[M]. 北京:化学工业出版社, 2004. [3] 吴伟钦, 郭忠诚. 镁及镁合金表面处理研究现状与展望[C]//第八届全国电镀与精饰学术年会论文集. 杭州:中国表面工程协会, 2004. [4] POURAHMAD P, ABBASI M. Materials flow and phase transformation in friction stir welding of Al 6013/Mg[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5):1253-1261.
[5] LIU P, LI Y, GENG H, et al. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials[J]. Materials Letters, 2007, 61(6):1288-1291.
[6] CHI C T, CHAO C G, LIU T F, et al. Aluminum element effect for electron beam welding of similar and dissimilar magnesium-aluminum-zinc alloys[J]. Scripta Materialia, 2007, 56(9):733-736.
[7] HAYAT F. The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials[J]. Materials & Design, 2011, 32(4):2476-2484.
[8] CAO X, JAHAZI M, IMMARIGEON J P, et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 2006, 171(2):188-204.
[9] WANG K S, WU J L, WANG W, et al. Underwater friction stir welding of ultrafine grained 2017 aluminum alloy[J]. Journal of Central South University, 2012, 19(8):2081-2085.
[10] 薛鹏, 张星星, 吴利辉,等. 搅拌摩擦焊接与加工研究进展[J]. 金属学报, 2016, 52(10):1222-1238. [11] SOMASEKHARAN A C, MURR L E. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy[J]. Materials Characterization, 2004, 52(1):49-64.
[12] AHMED K S. Dissimilar friction stir welded joints between 2024-T3 aluminum alloy and AZ31 magnesium alloy[J]. Materials Transactions, 2007, 48(9):2501-2505.
[13] FIROUZDOR V, KOU S. Al-to-Mg friction stir welding:Effect of positions of Al and Mg with respect to the welding tool[J]. Welding Journal, 2009, 88(11):213-224.
[14] KOSTKA A, COELHO R S, SANTOS J D, et al. Microstructure of friction stir welding of aluminium alloy to magnesium alloy[J]. Scripta Materialia, 2009, 60(11):953-956.
[15] RAO H M, GHAFFARI B, YUAN W, et al. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium[J]. Materials Science and Engineering:A, 2016, 651:27-36.
[16] FU B, QIN G, LI F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J]. Journal of Materials Processing Technology, 2015, 218(4):38-47.
[17] 李达, 孙明辉, 崔占全. 工艺参数对铝镁搅拌摩擦焊焊缝成形质量的影响[J]. 焊接学报, 2011, 32(8):97-100. [18] 周红云. 铝/镁异种合金搅拌摩擦焊工艺试验研究[D]. 南京:南京理工大学, 2016. [19] KERMANIDIS A T, TZAMTZIS A. An experimental approach for estimating the effect of heat affected zone (HAZ) microstructural gradient on fatigue crack growth rate in aluminum alloy FSW[J]. Materials Science and Engineering:A, 2017, 691:110-120.
[20] 王小娜, 梁志远, 陈科,等. 铝合金-镁合金间搅拌摩擦异质焊接研究现状[J]. 上海有色金属, 2011, 32(1):32-41. [21] 牛昆. 铝合金与镁合金异质材料搅拌摩擦焊接头的组织与性能[D]. 长春:吉林大学, 2012.
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 0