Temperature-Dependent Cyclic Plastic Deformation Behavior of U75VG Rail Steel
-
摘要: 采用单轴拉伸试验和循环塑性变形试验研究了U75VG钢轨钢在不同温度(25,300,600℃)时的单轴拉伸性能以及循环塑性变形行为。结果表明:在应变控制循环载荷下,25℃时U75VG钢轨钢表现出循环软化特性,300℃时在动态应变时效作用下表现出循环硬化特性,600℃时动态应变时效作用消失,表现出更明显的循环软化特性;在应力控制循环载荷下,U75VG钢轨钢在不同温度下均表现出明显的棘轮行为特征,棘轮应变速率随平均应力或应力幅的增加而增大,在300℃时棘轮应变演变呈现出准安定状态,在600℃时随着平均应力或应力幅的增加棘轮应变加速增大。Abstract: The uniaxial tensile property and cyclic plastic deformation behavior of U75VG rail steel were studied by uniaxial tensile tests and cyclic plastic deformation tests at different temperatures (25,300,600℃). The results show that the U75VG rail steel presented initial cyclic softening characteristics under strain-controlled cyclic load at 25℃, and initial cyclic hardening characteristics at 300℃ by the dynamic strain ageing. The dynamic strain ageing effect disappeared and the cyclic softening feature was obvious at 600℃. The U75VG rail steel exhibited obvious ratcheting behavior characteristics under stress-controlled cyclic load at different temperatures. The ratcheting strain rate increased with the increase of mean stress or stress amplitude. The ratcheting strain rate was close to the stable state at 300℃, and increased rapidly with the increase of mean stress or stress amplitude at 600℃.
-
-
[1] 周清跃,张银花,刘丰收,等. 高速铁路钢轨技术发展历程回顾[J]. 中国铁路,2018(3):1-8. [2] 龚利军. U75V热轧钢轨伤损原因分析[J]. 理化检验-物理分册,2014,50(6):453-456. [3] 邵晓峰. 高速轮轨ER8/U75VG钢超声振动辅助激光熔覆强化涂层制备及性能研究[D]. 南昌:华东交通大学,2017. [4] 程梦晓,苟国庆,陈辉. U75V钢轨断件断裂原因分析[J]. 电焊机,2010,40(10):66-69. [5] AHLSTROM J,KARLSSON B. Fatigue behaviour of rail steel:A comparison between strain and stress controlled loading[J]. Wear,2005,258(7/8):1187-1193.
[6] AHLSTROM J,KARLSSON B. Modified railway wheel steels:Production and evaluation of mechanical properties with emphasis on low-cycle fatigue behavior[J]. Metallurgical and Materials Transactions A,2009,40(7):1557-1567.
[7] PUN C L,KAN Q H,MUTTON P J,et al. Ratcheting behaviour of high strength rail steels under bi-axial compression-torsion loadings:Experiment and simulation[J]. International Journal of Fatigue,2014,66:138-154.
[8] FANG T, KAN Q H, KANG G Z, et al. Uniaxial ratcheting and low-cycle fatigue failure of U75V rail steel[J]. Applied Mechanics and Materials, 2017, 853:246-250.
[9] VO K D,TIEU A K,ZHU H T,et al. The influence of high temperature due to high adhesion condition on rail damage[J]. Wear,2015,330/331:571-580.
[10] YU D,CHEN X,YU W,et al. Thermo-viscoplastic modeling incorporating dynamic strain aging effect on the uniaxial behavior of Z2CND18.12N stainless steel[J]. International Journal of Plasticity,2012,37:119-139.
[11] PHAM M S,HOLDSWORTH S R. Role of microstructural condition on fatigue damage development of AISI 316L at 20 and 300℃[J]. International Journal of Fatigue,2013,51:36-48.
[12] KANG G Z,KAN Q H,ZHANG J,et al. Time-dependent ratchetting experiments of SS304 stainless steel[J]. International Journal of Plasticity,2006,22(5):858-894.
[13] HONG S G,LEE S B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel:Influence of dynamic strain aging[J]. International Journal of Fatigue,2004,26(8):899-910.
[14] 韩鹏程,田荣,沈演忠,等. 316L奥氏体不锈钢高温拉伸时的动态应变时效[J]. 金属材料,2012,41(16):58-62. [15] 刘风亮,郭伟国,孟卫华,等. DH36钢中的动态应变时效特性[J]. 兵器材料科学与工程,2010,33(4):16-20.
计量
- 文章访问数: 10
- HTML全文浏览量: 0
- PDF下载量: 2