Research Progress on Formation Mechanism and Low Temperature Preparation Technology of Al2O3 Film on Surface of FeAl/Al2O3 Tritium Permeation Barrier
-
摘要: 应用基体渗铝+选择性氧化法制备由FeAl合金过渡层及其表面Al2O3薄膜组成的FeAl/Al2O3阻氚涂层是当前防氚渗透技术的首选,Al2O3薄膜是决定FeAl/Al2O3阻氚涂层服役性能的关键。综述了FeAl合金及其涂层的表面氧化行为,包括铝的选择性氧化、氧化热力学和动力学行为以及氧化机制,介绍了基体元素对Al2O3薄膜形成和结构的影响以及阻氚涂层表面Al2O3薄膜低温制备技术的研究进展,展望了FeAl/Al2O3阻氚涂层的未来研究方向。
-
关键词:
- FeAl/Al2O3阻氚涂层 /
- 氧化行为 /
- Al2O3薄膜 /
- 低温制备
Abstract: Preparation of FeAl/Al2O3 tritium permeation barrier consisting of FeAl alloy transition layer and Al2O3 film on the layer's surface by substrate aluminization and subsequent selective oxidation is now the first choice of tritium permeation barrier technology. The Al2O3 film plays a key role on the service performance of FeAl/Al2O3 tritium permeation barrier. Surface oxidation behaviors of the FeAl alloy and coating, including selective oxidation of Al, oxidation thermodynamic and kinetic behavior and oxidation mechanism, are reviewed. Influence of substrate elements on Al2O3 film forming as well as its structure and the low temperature preparation technology of Al2O3 film on surface of the tritium permeation barrier are discribed. The future research direction of FeAl/Al2O3 tritium permeation barrier is proposed. -
-
[1] 张桂凯, 向鑫, 杨飞龙, 等. 我国聚变堆结构材料表面阻氚涂层的研究进展[J]. 核化学与放射化学, 2015, 37(5):310-320. [2] CRISTESCU I R, CRISTESCU I, DOERR L, et al. Tritium inventories and tritium safety design principles for the fuel cycle of ITER[J]. Nuclear Fusion, 2007, 47(7):458-463.
[3] CAUSEY R A, KAMESKY R A, SAN MARCHI C. Tritium barriers and tritium diffusion in fusion reactors[J]. Comprehensive Nuclear Materials, 2012, 4:511-549.
[4] DEVIA D M, RESTREPO-PARRA E, ARANGO P J. Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique[J]. Applied Surface Science, 2011, 258(3):1164-1174.
[5] NEMANIČ V, MCGUINESS P J, DANEU N, et al. Hydrogen permeation through silicon nitride films[J]. Journal of Alloys and Compounds, 2012, 539:184-189.
[6] ZHANG G K, CHEN C A, LUO D L, et al. An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece[J]. Fusion Engineering and Design, 2012, 87(7/8):1370-1375.
[7] 山常起. 氢同位素在一些材料中的溶解度系数、扩散系数和渗透率[J]. 中国核科技报告, 1992(增刊3):281-300. [8] LEVCHUK D, KOCH F, MAIER H, et al. Gas-driven deuterium permeation through Al2O3 coated samples[J]. Physica Scripta, 2004:119.
[9] 吴艳萍, 王庆富, 蒋驰,等. 1Cr18Ni9Ti不锈钢表面Al2O3阻氚涂层磁控溅射-微弧氧化法制备技术研究[J]. 功能材料, 2016, 47(9):9187-9191. [10] FAZIO C, STEIN-FECHNER K, SERRA E, et al. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier[J]. Journal of Nuclear Materials, 1999, 273(3):233-238.
[11] 张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料[M]. 北京:国防工业出版社,2001. [12] GESMUNDO F, NIU Y, WANG W. An approximate analysis of the external oxidation of ternary alloys forming insoluble oxides. Ⅱ:Low oxidant pressures[J]. Oxidation of Metals, 2001, 56(5/6):537-549.
[13] 张志刚, 张学军, 潘太军, 等. Fe-Al和Fe-Cr-Al合金在高温下的初期氧化[J]. 钢铁研究, 2007, 35(3):38-42. [14] TOMASZEWICZ P, WALLWORK G R. Iron-aluminum alloys:A review of their oxidation behavior[J]. Review on High Temperature Materials, 1978, 4(1):75-105.
[15] 张志刚, HOU P Y, 牛焱. Fe-xCr-10Al(x=0, 5, 10)合金在900℃的氧化:第三组元作用的新例子[J]. 金属学报, 2005, 41(6):649-654. [16] GULBRANSEN E A, ANDREW K F. Oxidation studies on the iron-chromium-aluminum heater alloys[J]. Journal of the Electrochemical Society, 1959, 106(4):294-302.
[17] HAGEL W C. The oxidation off iron, nickel and cobalt-base alloys containing aluminum[J]. Corrosion, 1965, 21(10):316-326.
[18] REGINA J R, DUPONT J N, MARDER A R. Gaseous corrosion resistance of Fe-Al-based alloys containing Cr additions:Part I:kinetic results[J]. Materials Science and Engineering:A, 2005, 404(1/2):71-78.
[19] ROBINO C V. Representation of mixed reactive gases on free energy (Ellingharn-Richardson) diagrams[J]. Metallurgical and Materials Transactions B, 1996, 27(1):65-69.
[20] 谈萍, 陈金妹, 汤慧萍, 等. FeAl系合金抗高温氧化性能研究进展[J]. 功能材料, 2012, 43(增刊1):29-32. [21] HUTCHINGS R, LORETTO M H. Compositional dependence of oxidation rates of NiAl and CoAl[J]. Metal Science, 1978, 12(11):503-510.
[22] SAEGUSA F, LEE L. Oxidation of iron-aluminum alloys in the range 500-1000℃[J]. Corrosion, 1966, 22(6):168-177.
[23] AHMED H A, SMELTZER W W. Oxidation properties of Fe-Al alloys (1.5-5 a/o Al) in oxygen at 1173 K[J]. Journal of the Electrochemical Society, 1986, 133(1):212-216.
[24] ZHANG Z G, GESMUNDO F, HOU P Y, et al. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys[J]. Corrosion Science, 2006, 48(3):741-765.
[25] LANG F Q, YU Z M, GEDEVANISHVILI S, et al. Isothermal oxidation behavior of a sheet alloy of Fe-40at.%Al at temperatures between 1073 and 1473 K[J]. Intermetallics, 2003, 11(7):697-705.
[26] ALVARADO-OROZCO J M, MORALES-ESTRELLA R, BOLDRICK M S, et al. Kinetic study of the competitive growth between θ-Al2O3 and α-Al2O3 during the early stages of oxidation of β-(Ni, Pt)Al bond coat systems:Effects of low oxygen partial pressure and temperature[J]. Metallurgical and Materials Transactions A, 2015, 46(2):726-738.
[27] BRUMM M W, GRABKE H J. The oxidation behaviour of NiAl:I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J]. Corrosion Science, 1992, 33(11):1677-1690.
[28] 孙祖庆, 黄原定, 杨王玥, 等. Fe3Al基金属间化合物合金强韧化途径探索[J]. 金属学报, 1993, 29(8):20-24. [29] HUNTZ A M, HOU P Y, MOLINS R. Study by deflection of the oxygen pressure influence on the phase transformation in alumina thin films formed by oxidation of Fe3Al[J]. Materials Science and Engineering:A, 2007, 467(1/2):59-70.
[30] QUADAKKERS W J, ELSCHNER A, SPEIER W, et al. Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS[J]. Applied Surface Science, 1991, 52(4):271-287.
[31] JAMNAPARA N I, MUKHERJEE S, KHANNA A S. Phase transformation of alumina coating by plasma assisted tempering of aluminized P91 steels[J]. Journal of Nuclear Materials, 2015, 464:73-79.
[32] HUNTZ A M, ABDERRAZIK G B, MOULIN G, et al. Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy[J]. Applied Surface Science, 1987, 28(4):345-366.
[33] SOLIMAN H M, MOHAMED K E, EL-AZIM M E A, et al. Oxidation resistance of the aluminide coating formed on carbon steels[J]. Journal of Materials Science and Technology, 2009, 13(5):383-388.
[34] SÁNCHEZ L, BOLÍVAR F J, HIERRO M P, et al. Temperature dependence of the oxide growth on aluminized 9-12%Cr ferritic-martensitic steels exposed to water vapour oxidation[J]. Thin Solid Films, 2009, 517(11):3292-3298.
[35] KITAJIMA Y, HAYASHI S, NISHIMOTO T,et al. Acceleration of metastable to alpha transformation of Al2O3 scale on Fe-Al alloy by pure-metal coatings at 900℃[J]. Oxidation of Metals, 2011, 75(1/2):41-56.
[36] 向鑫. 铝化物阻氘涂层中的基底效应研究[D]. 北京:中国工程物理研究院, 2016. [37] ANDERSSON J M, WALLIN E, HELMERSSON U, et al. Phase control of Al2O3 thin films grown at low temperatures[J]. Thin Solid Films, 2006, 513(1/2):57-59.
[38] ANDERSSON J M, CZIGÁNY Z, JIN P, et al. Microstructure of α-alumina thin films deposited at low temperatures on chromia template layers[J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films, 2004, 22(1):117-121.
[39] ZHAN Q, ZHAO W W, YANG H G, et al. Formation of α-alumina scales in the Fe-Al(Cr) diffusion coating on China low activation martensitic steel[J]. Journal of Nuclear Materials, 2015, 464:135-139.
[40] EKLUND P, SRIDHARAN M, SILLASSEN M, et al. α-Cr2O3 template-texture effect on α-Al2O3 thin-film growth[J]. Thin Solid Films, 2008, 516(21):7447-7450.
[41] KITAJIMA Y, HAYASHI S, NISHIMOTO T, et al. Acceleration of metastable to alpha transformation of Al2O3 scale on Fe-Al alloy by pure-metal coatings at 900℃[J]. Oxidation of Metals, 2011, 75(1/2):41-56.
[42] ROVERE F, MAYRHOFER P H, REINHOLDT A, et al. The effect of yttrium incorporation on the oxidation resistance of Cr-Al-N coatings[J]. Surface and Coatings Technology, 2008, 202(24):5870-5875.
[43] AHMADI H, LI D Y. Mechanical and tribological properties of aluminide coating modified with yttrium[J]. Surface and Coatings Technology, 2002, 161(2/3):210-217.
[44] ZHAN Q, YANG H G, ZHAO W W, et al. Characterization of the alumina film with cerium doped on the iron-aluminide diffusion coating[J]. Journal of Nuclear Materials, 2013, 442(1/2/3):603-606.
[45] JEDLI AN'G SKI J. Comments on the effect of yttrium on the early stages of oxidation of alumina formers[J]. Oxidation of Metals, 1993, 39(1/2):55-60.
[46] YOU Y, ITO A, TU R, et al. Low-temperature deposition of α-Al2O3 films by laser chemical vapor deposition using a diode laser[J]. Applied Surface Science, 2010, 256(12):3906-3911.
[47] KYRYLOV O, KURAPOV D, SCHNEIDER J M. Effect of ion irradiation during deposition on the structure of alumina thin films grown by plasma assisted chemical vapour deposition[J]. Applied Physics A, 2005, 80(8):1657-1660.
[48] ZYWITZKI O, HOETZSCH G, FIETZKE F, et al. Effect of the substrate temperature on the structure and properties of Al2O3 layers reactively deposited by pulsed magnetron sputtering[J]. Surface and Coatings Technology, 1996, 82(1/2):169-175.
[49] ROSÉN J, MRÁZ S, KREISSIG U, et al. Effect of ion energy on structure and composition of cathodic arc deposited alumina thin films[J]. Plasma Chemistry and Plasma Processing, 2005, 25(4):303-317.
[50] WALLIN E, SELINDER T I, ELFWING M, et al. Synthesis of α-Al2O3 thin films using reactive high-power impulse magnetron sputtering[J]. EPL (Europhysics Letters), 2008, 82(3):36002.
[51] SCHNEIDER J M, SPROUL W D, VOEVODIN A A, et al. Crystalline alumina deposited at low temperatures by ionized magnetron sputtering[J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films, 1997, 15(3):1084-1088.
计量
- 文章访问数: 1
- HTML全文浏览量: 1
- PDF下载量: 0