Creep-Fatigue Interaction Behavior of Powder Metallurgy Nickel-Based Superalloy FGH96
-
摘要: 对国产粉末冶金FGH96镍基高温合金在650℃总应变控制下进行了无保载疲劳试验以及最大拉/压应变保载蠕变-疲劳试验,研究了其失效寿命及失效模式,并与铸造GH4169镍基高温合金的失效寿命进行了对比。结果表明:保载的引入降低了FGH96高温合金的失效寿命,与最大拉应变保载相比,最大压应变保载时产生的蠕变损伤更大,失效寿命更短;FGH96高温合金的疲劳失效寿命基本上高于GH4169高温合金的,但是较高应变幅下(大于1.4%)的蠕变-疲劳失效寿命低于GH4169高温合金的,在较低应变幅下(小于1.4%)则相反;FGH96高温合金的疲劳断口和蠕变-疲劳断口均呈现出表面或近表面多裂纹源失效特征。Abstract: Fatigue test without load-holding and creep-fatigue tests with load-holding at maximum tension/compression strains were conducted on domestic powder metallurgy nickel-based superalloy FGH96 under total strain control at 650℃. The failure life and failure mode of the alloy were studied, and the failure life was compared with that of as-cast nickel-based superalloy GH4169. The results show that the introduced load-holding process reduced the failure life of the FGH96 superalloy. Compared with load-holding at maximum tension strain, the creep damage produced during load-holding at the maximum compression strain was larger, resulting in a shorter failure life. The fatigue failure lives of FGH96 superalloy were higher than those of GH4169 superalloy, and the creep-fatigue failure lives were lower than those of GH4169 superalloy at relatively high strain amplitude (larger than 1.4%), while the opposite was true at relatively low strain amplitude (lower than 1.4%). The fatigue fracture and creep-fatigue fracture of FGH96 superalloy both showed mutiple crack initiation failure characteristics on surface or near surface.
-
Keywords:
- creep-fatigue /
- loading waveform /
- powder metallurgy alloy /
- fracture characteristic
-
-
[1] ZHUANG W Z, SWANSSON N S. Thermo-mechanical fatigue life prediction:A critical review[R]. Melbourne Victoria, Australia:DSTO Aeronautical and Maritime Research Laboratory,1998.
[2] 刘新灵,周家盛,钟培道,等.某发动机Ⅲ级涡轮叶片断裂失效分析[J].机械工程材料,2005, 29(8):67-70. [3] THAKKER A B, COWLES B A. Low strain, long life creep fatigue of AF2-1DA and INCO 718[R].[S.l.]:NASA,1983.
[4] 谢锡善.我国高温材料的应用与发展[J].机械工程材料,2004, 28(1):2-8. [5] 王春水,彭志方.镍基高温合金设计方法的研究进展[J].机械工程材料,2005, 29(1):4-6. [6] SABOUR M H. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures[D]. Montreal:Concordia University, 2005.
[7] 豪斯纳. 粉末冶金手册[M]. 北京市粉末冶金研究所, 译. 北京:冶金工业出版社, 1982. [8] 邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报, 2006,26(3):244-250. [9] ANDERSON R. Powder metallurgy at Pratt and Whitney[J]. International of Powder Matallurgy, 1990, 26(2):11-18.
[10] 汪武祥,杨万宏.俄罗斯粉末高温合金技术与经济性分析[J].航空制造工程,1998(5):21-23. [11] SULLIVAN K H, MILBERRY L. Power:The Pratt & Whitney Canada Story[M]. Toronto:[s.n.], 1989.
[12] COUTURIER R, BURLET H, TERZI S, et al. Process development and mechanical properties of alloy U720LI for high temperature turbine disks[C]//Superalloys 2004.[S.l.]:[s.n.], 2004:351-359.
[13] RAUJOL S, PETTINARI F, LOCQ D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy[J]. Materials Science and Engineering:A, 2004, 387/388/389:678-682.
[14] TERZI S, COUTURIER R, GUÉTAZ L, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy[J]. Materials Science and Engineering:A, 2008, 483/484:598-601.
[15] 宋迎东,高德平.粉末冶金与常规高温合金构件应力与疲劳寿命对比[J].机械工程材料, 1999,33(2):9-11. [16] 刘君滨. FGH97粉末高温合金盘件组织性能研究[J].中国新技术新产品,2016(5):72-73. [17] 聂龙飞. FGH96粉末高温合金热变形及动态再结晶演化研究[D]. 大连:大连理工大学, 2014. [18] 姚志浩,董建新,张麦仓,等.组织特征对粉末高温合金FGH96疲劳裂纹扩展速率的影响[J].机械工程学报,2013, 49(20):158-164. [19] 周静怡,刘昌奎,赵文侠,等.粉末高温合金FGH96原始颗粒边界及高温原位高周疲劳研究[J]. 航空材料学报,2017,37(5):83-89. [20] PENG Z, TIAN G, JIANG J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy[J]. Materials Science and Engineering:A, 2016, 676:441-449.
[21] 王淑云,李惠曲,杨洪涛.粉末高温合金超塑性等温锻造技术研究[J].航空材料学报,2007,27(5):30-33. [22] WEI D S, YANG X G. Investigation and modeling of low cycle fatigue behaviors of two Ni-based superalloys under dwell conditions[J]. International Journal of Pressure Vessels and Piping, 2009, 86(9):616-621.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 3