Strain Criterion of Reheat Cracking in 2.25Cr1Mo0.25V Steel
-
摘要: 在不同参数下制备了2.25Cr1Mo0.25V钢焊接接头热影响区粗晶区(CGHAZ)的热模拟试样,通过与实焊接头CGHAZ硬度、晶粒度和组织的对比,确定最佳热模拟参数;采用该参数得到模拟CGHAZ试样,研究了其在675℃下的应力松弛行为,分析了再热开裂过程并得到再热开裂应变判据。结果表明:最佳热模拟参数为热输入30 kJ·cm-1、预热温度200℃、加热速率1 000℃·s-1、峰值温度1 320℃、峰值温度停留时间1 s,所得CGHAZ试样的组织为板条贝氏体,晶粒度级别为4.5级;CGHAZ试样在不同初始应力下的应力松弛行为相似,其临界失效蠕变应变均在0.31%左右;该临界失效蠕变应变可视为再热开裂应变判据,也可作为表征CGHAZ再热裂纹敏感程度的蠕变应变分界点,用于评价该钢的焊后热处理工艺。
-
关键词:
- 2.25Cr1Mo0.25V钢 /
- 热影响区粗晶区(CGHAZ) /
- 再热裂纹 /
- 热模拟 /
- 应变判据
Abstract: Coarse-grained heat-affected zone (CGHAZ) simulation specimens of 2.25Cr1Mo0.25V steel welded joint were prepared with different parameters, and the optimal thermal simulation parameters were determined by comparing hardness, grain size and microstructure with those of the actual joint CGHAZ. And then the CGHAZ specimen was simulated with the optimal parameters. The stress relaxation behavior of the specimen at 675℃ was studied, the reheat cracking process was analyzed, and the reheat cracking strain criterion was obtained. The results show that the optimal thermal simulation parameters were listed as follows:heat input of 30 kJ·cm-1, preheating temperature of 200℃, heating rate of 1 000℃·s-1, peak temperature of 1 320℃, time on peak temperature of 1 s. The microstructure of the obtained CGHAZ specimen consisted of lath bainite, with grain size of grade 4.5. The stress relaxation behaviors of CGHAZ specimen were similar under different initial stresses. The critical failure creep strains were all about 0.31%. The critical failure creep strain can be regarded as the reheat cracking strain criterion, and can be used to evaluate the post-welding heat treatment process of the steel as the creep strain demarcation point for characterizing the sensitivity of CGHAZ reheat crack. -
-
[1] SHIMOMURA J, NAKANO Y, UEDA S, et al. Development of V-modified 21/4~3Cr-1Mo steels for high temperature service[J].Design & Analysis,1989,2:1013-1020.
[2] 柳曾典, 陈进, 卜华全, 等. 2.25Cr-1Mo-0.25V钢加氢反应器开发与制造中的一些问题[J]. 压力容器, 2011, 28(5):33-40. [3] DHOOGE A, VINCKIER A. Reheat cracking:A review of recent studies[J]. International Journal of Pressure Vessels and Piping, 1987, 27(4):239-269.
[4] 卜华全,罗雪梅. 钒改进钢在压力容器中的应用及发展趋势[J]. 石油和化工设备,2012,15(1):5-8. [5] 牛济泰.材料和热加工领域的物理模拟技术[M]. 北京:国防工业出版社, 1999. [6] VINCKIER A, DHOOGE A. Susceptibility to reheat cracking of nuclear pressure vessel steels[R]. London:International Institute of Welding, 1975.
[7] CHAUVY C, PILLOT S. Prevention of weld metal reheat cracking during Cr-Mo-V heavy reactors fabrication[C]//ASME 2009 Pressure Vessels and Piping Conference. Prague, Czech Republic:ASME, 2009:243-251.
[8] HAN Y, CHEN X, FAN Z, et al. Reheat cracking sensitivity of CGHAZ in vanadium-modified 2.25Cr1Mo welds[C]//ASME 2014 Pressure Vessels and Piping Conference. Anaheim, California:ASME, 2014:V06AT06A062.
[9] NAWROCKI J G, DUPONT J N, ROBINO C V, et al. The mechanism of stress-relief cracking in a ferritic alloy steel[J]. Welding Journal, 2003, 82(S2):25-35.
[10] 李丽, 曲赞坤, 王嘉麟. 热模拟法研究消除应力裂纹[J]. 东北大学学报(自然科学版), 1998, 19(1):11-14. [11] 李前, 王永和, 查克勇, 等. CF-62钢球罐再次组焊的再热裂纹敏感性[J].机械工程材料, 2008, 32(4):14-15. [12] BO C, SPINDLER M W, SMITH D J, et al. Effect of thermo-mechanical history on reheat cracking in 316H austenitic stainless steel weldments[C]//ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington:ASME, 2010:357-363.
[13] American Petroleum Institute. Damage mechanisms affecting fixed equipment in the refining industry:API 571[S]. Malaysia:API, 2011.
[14] SKELTON R P, GOODALL I W, WEBSTER G A, et al. Factors affecting reheat cracking in the HAZ of austenitic steel weldments[J]. International Journal of Pressure Vessels and Piping, 2003, 80(7/8):441-451.
[15] TSAI M C, CHIOU C S, YANG J R. Microstructural evolution of simulated heat-affected zone in modified 2.25Cr-1Mo steel during high temperature exposure[J]. Journal of Materials Science, 2003, 38(11):2373-2391.
[16] 韩一纯. 2.25Cr1Mo0.25V钢再热裂纹生成机理研究[D]. 合肥:中国科学技术大学, 2015. [17] 张皓羽. 基于松弛应变控制的2.25Cr1Mo0.25V钢CGHAZ再热裂纹开裂判据研究[D].上海:华东理工大学, 2017. [18] SUNG H J, HEO N H, KIM S. Roles of molybdenum and tungsten on reheat cracking susceptibility of 2.25Cr heat resistant steels[J]. ISIJ International, 2017, 57(1):176-180.
[19] DHOOGE A, DOLBY R E, SEBILLE J, et al. A review of work related to reheat cracking in nuclear reactor pressure vessel steels[J]. International Journal of Pressure Vessels and Piping, 1978, 6(5):329-409.
[20] 张相权, 陈泽圻, 周光棋, 等. 用插销法研究焊接再热裂缝:对14MnMoNbB、BHW38、15MnVNCu三种压力容器用钢再热裂缝敏感性的评定[J]. 焊接学报, 1981, 2(2):75-84. [21] TURSKI M, BOUCHARD P J, STEUWER A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel[J]. Acta Materialia, 2008, 56(14):3598-3612.
[22] 韩一纯, 陈学东, 范志超, 等. 热输入对2.25Cr1MoV钢粗晶热影响区再热裂纹敏感性的影响[J]. 机械工程学报, 2015, 51(6):2-8.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0