• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

表面预置铬粉超声冲击和退火处理后半高速钢的显微组织和耐磨性能

陆超, 梁昊, 张斌杰, 孙文伟, 张智慧, 周小猛, 毛向阳

陆超, 梁昊, 张斌杰, 孙文伟, 张智慧, 周小猛, 毛向阳. 表面预置铬粉超声冲击和退火处理后半高速钢的显微组织和耐磨性能[J]. 机械工程材料, 2019, 43(6): 33-37,42. DOI: 10.11973/jxgccl201906007
引用本文: 陆超, 梁昊, 张斌杰, 孙文伟, 张智慧, 周小猛, 毛向阳. 表面预置铬粉超声冲击和退火处理后半高速钢的显微组织和耐磨性能[J]. 机械工程材料, 2019, 43(6): 33-37,42. DOI: 10.11973/jxgccl201906007
LU Chao, LIANG Hao, ZHANG Bingjie, SUN Wenwei, ZHANG Zhihui, ZHOU Xiaomeng, MAO Xiangyang. Microstructure and Wear Resistance of Semi-high Speed Steel with Chrome Powder on Its Surface and then Treated by Ultrasonic Impact and Annealing[J]. Materials and Mechanical Engineering, 2019, 43(6): 33-37,42. DOI: 10.11973/jxgccl201906007
Citation: LU Chao, LIANG Hao, ZHANG Bingjie, SUN Wenwei, ZHANG Zhihui, ZHOU Xiaomeng, MAO Xiangyang. Microstructure and Wear Resistance of Semi-high Speed Steel with Chrome Powder on Its Surface and then Treated by Ultrasonic Impact and Annealing[J]. Materials and Mechanical Engineering, 2019, 43(6): 33-37,42. DOI: 10.11973/jxgccl201906007

表面预置铬粉超声冲击和退火处理后半高速钢的显微组织和耐磨性能

基金项目: 

江苏省优秀青年基金资助项目(BK20170090);南京工程学院大学生科技创新基金资助项目(TZ20170005);江苏省"青蓝工程"项目;江苏省"六大人才高峰"项目(XCL-033)

详细信息
    作者简介:

    陆超(1997-),男,江苏南通人,本科生

  • 中图分类号: TG142.45

Microstructure and Wear Resistance of Semi-high Speed Steel with Chrome Powder on Its Surface and then Treated by Ultrasonic Impact and Annealing

  • 摘要: 对表面预置铬粉的铸态半高速钢进行超声冲击处理,再进行450℃×2 h退火处理,研究了处理前后其表层的显微组织与高温(400℃)耐磨性能。结果表明:铸态试验钢的组织由索氏体和碳化物组成,经超声冲击+退火处理后,索氏体中的渗碳体片断裂、球化,表层组织细化。经超声冲击+退火处理后,试验钢的表面硬度提高,表层硬度呈梯度分布,强化层厚度达2.5 mm;高温耐磨性能提高,磨损率由铸态的0.997 mg·min-1下降到0.640 mg·min-1,摩擦因数由铸态的0.547下降到0.509,磨粒磨损程度减轻。
    Abstract: Ultrasonic impact treatment was conducted on as-cast semi-high speed steel with surface presetting chrome powder, and then the steel was annealed at 450℃ for 2 h. The microstructure and high-temperature (450℃) wear resistance of the surface layer before and after treatment were studied. The results show that the as-cast structure of the tested steel consisted of sorbite and carbides. After ultrasonic impact and annealing treatment, the cemetite lamellae in sorbite was broken and spherized, and the structure of the surface layer was refined. After ultrasonic impact and annealing treatment, the surface hardness of the tested steel increased, the hardness in the surface layer distributed in gradient, and the thickness of the hardening layer reached 2.5 mm. Moreover, the high-temperature wear resistance was improved; the wear rate decreased from the as-cast 0.997 mg·min-1 to 0.640 mg·min-1, the friction coefficient decreased from the as-cast 0.547 to 0.509, and the abrasive wear degree also decreased.
  • [1]

    WANG Z B, TAO N R, LI S, et al. Effect of surface nanocrystallization on friction and wear properties in low carbon steel[J]. Materials Science and Engineering:A, 2003, 352(1/2):144-149.

    [2]

    ROLAND T, RETRAINT D, LU K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta Materialia, 2006, 54(11):1949-1954.

    [3] 朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20):35-45.
    [4]

    LIU G, WANG S C, LOU X F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J]. Scripta Materialia, 2001, 44(8/9):1791-1795.

    [5] 赵婧, 夏伟, 李宁, 等. 滚压诱导纯铜梯度纳米晶层及其微动磨损性能[J]. 华南理工大学学报(自然科学版), 2013,41(9):120-125.
    [6] 何柏林, 余皇皇. 超声冲击表面纳米化研究的发展[J]. 热加工工艺, 2010, 39(18):112-115.
    [7] 何柏林, 史建平, 颜亮, 等. 超声冲击对钢轨钢组织与性能的影响[J]. 中国铁道科学, 2009, 30(4):58-62.
    [8] 殷畅,张平,赵军军.超声冲击对20Cr2Ni4A渗碳齿轮钢性能的影响[J].装甲兵工程学院学报,2016,30(4):88-90.
    [9]

    FAN Z, XU H, LI D, et al. Surface nanocrystallization of 35# type carbon steel induced by ultrasonic impact treatment (UIT)[J]. Procedia Engineering, 2012, 27:1718-1722.

    [10] 吕克茂, 李海淄. 金属材料的超声冲击影响深度研究[C]//中国钢结构协会钢结构焊接分会第二届学术年会论文集.镇江:中国钢结构协会, 2005:356-360.
    [11]

    MAO X Y, LI D Y, WANG Z Z, et al. A study on nanoscale gradient alloying induced by a punching deformation process on low carbon steel[J]. Materials Letters, 2015, 158:45-48.

    [12] 陈浩, 毛向阳, 姚瑶, 等. 表面剧烈形变与回复处理诱发Q235钢梯度组织结构的力学性能研究[J]. 热加工工艺, 2017, 46(10):177-180.
    [13] 宫开令, 高春利, 张自立. 半高速钢轧辊材料性能的研究[J]. 轧钢, 2003, 20(6):22-24.
    [14] 那顺桑, 张国涛, 陈建莎, 等. 轧辊用高速钢滑动磨损耐磨性与磨损机理研究[C]//第二届全国线棒材轧机用高速钢轧辊使用技术研讨会论文集.海口:中国金属学会, 2010:18-22.
    [15] 刘德富, 尹钟大, 徐德祥, 等. 冷轧工作辊用半高速钢中碳化物的溶解和析出[J]. 钢铁, 2005, 40(4):69-71.
    [16] 胡国雄, 盛光敏, 韩靖. 塑性变形诱发表面自纳米化的研究及其应用[J]. 材料导报, 2007, 21(4):117-121.
    [17] 赵晓. 钢中渗碳体的冷变形与溶解机制[D]. 秦皇岛:燕山大学, 2014.
    [18] 林一坚. 热激活条件下的变形诱导渗碳体溶解[J]. 宝钢技术, 2014(1):5-13.
    [19] 赵新. 半高速钢型冷轧辊用钢的研究[D]. 沈阳:东北大学, 2000.
    [20] 周玉, 武高辉. 材料分析测试技术[M]. 哈尔滨:哈尔滨工业大学出版社, 2007.
    [21] 朱有利, 孙寒骁, 侯帅. 循环载荷下喷丸层残余应力与半高宽的变化[J]. 装甲兵工程学院学报, 2016, 30(5):82-85.
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-12
  • 修回日期:  2019-04-10
  • 刊出日期:  2019-06-19

目录

    /

    返回文章
    返回