Research Progress on Micromechanics of Domain Switching in Ferroelectric Materials
-
摘要: 铁电材料最显著的显微组织特征是电畴结构,其自发极化矢量可以随外加电/力场转动(即畴变),从而使铁电材料具有独特的机电性能。从畴变理论出发,综述了畴变准则的研究进展,并介绍了畴壁动力学以及与畴变相关的断裂力学研究成果,旨在为铁电材料的细观力学研究提供参考。Abstract: Domain structure is deemed as the remarkable microstructural feature of ferroelectric materials, and its spontaneous polarization vector can be switched by the external applied electric/mechanical field (namely domain switching), leading to multiply electromechanical properties of ferroelectric materials. Starting from the theory of domain switching, research progress on the domain switching criterion is reviewed, and research results of the domain-wall dynamics and the domain switching-dependent fracture mechanics are described. It is aimed at providing some references for the micromechanics research of ferroelectric materials.
-
-
[1] HAERTLING G H. Ferroelectric ceramics:History and technology[J]. Journal of the American Ceramic Society, 1999, 82(4):797-818.
[2] UCHINO K. Relaxor ferroelectric devices[J]. Ferroelectrics, 2011, 151:321-330.
[3] CHEN L Q. Phase-field method of phase transitions/domain structures in ferroelectric thin films:A review[J].Journal of the American Ceramic Society, 2008, 91(6):1835-1844.
[4] 王春雷, 李吉超, 赵明磊. 压电铁电物理[M]. 北京:科学出版社, 2009. [5] FANG D N, LIU J X. Fracture mechanics of piezoelectric and ferroelectric solids[M]. Beijing:Tsinghua University Press, 2012.
[6] GAO P, BRITSON J, NELSON C T, et al. Ferroelastic domain switching dynamics under electrical and mechanical excitations[J]. Nature Communications, 2014, 5:3801.
[7] LI J Y, ROGAN R C, VSTVNDAG E, et al. Domain switching in polycrystalline ferroelectric ceramics[J]. Nature Materials, 2005, 4(10):776-781.
[8] 张丹书. 多畴PZT铁电薄膜畴变的实验和理论研究[D]. 湘潭:湘潭大学, 2013. [9] 张晖辉, 刘峰. 铁电陶瓷非线性本构行为的实验研究进展[J]. 硅酸盐通报, 2010, 29(1):138-142. [10] AUCIELLO O, SCOTT J F, RAMESH R. The physics of ferroelectric memories[J]. Physics Today, 1998, 51(7):22-27.
[11] LOU X J. Polarization fatigue in ferroelectric thin films and related materials[J]. Journal of Applied Physics, 2009, 105(2):024101.
[12] SCHENK T, YURCHUK E, MUELLER S, et al. About the deformation of ferroelectric hystereses[J]. Applied Physics Reviews, 2014, 1(4):041103.
[13] CHEN J Y, TANG Z H, TIAN R N, et al. Domain switching contribution to the ferroelectric, fatigue and piezoelectric properties of lead-free Bi0.5(Na0.85K0.15)0.5TiO3 films[J]. RSC Advances, 2016, 6(40):33834-33842.
[14] KOZINOV S, KUNA M. Mechanically induced ferroelectric domain evolution during crack propagation[J]. Smart Materials and Structures, 2019, 28(2):024001.
[15] LI Y W, LI F X. Large anisotropy of fracture toughness in mechanically poled/depoled ferroelectric ceramics[J]. Scripta Materialia, 2010, 62(5):313-316.
[16] CHEN Y, MIAO C Y, XIE S X, et al. Fracture behaviors and ferroelastic deformation in W/Cr co-doped Bi4Ti3O12 ceramics[J]. Journal of the American Ceramic Society, 2016, 99(6):2103-2109.
[17] CHEN Y, XU J G, XIE S X, et al. Failure mode, ferroelastic behavior and toughening effect of bismuth titanate ferroelectric ceramics under uniaxial compression load[J]. Materials & Design, 2018, 152:54-64.
[18] TAN Z, XIE S X, JIANG L M, et al. Oxygen octahedron tilting, electrical properties and mechanical behaviors in alkali niobate-based lead-free piezoelectric ceramics[J]. Journal of Materiomics, 2019. DOI: 10.1016/j.jmat.2019.02.001.
[19] 朱廷. 铁电陶瓷的电致失效力学[D]. 北京:清华大学, 1999. [20] OKAYASU M, ODAGIRI N, MIZUNO M. Damage characteristics of lead zirconate titanate piezoelectric ceramic during cyclic loading[J]. International Journal of Fatigue, 2009, 31(8/9):1434-1441.
[21] SCHADER F H, ISAIA D, WEBER M, et al. High-temperature stress-dependent piezoelectric and dielectric coefficient of soft Pb(Zr, Ti)O3[J]. Journal of Materials Science, 2018, 53(5):3296-3308.
[22] 陈渝. W/Cr共掺杂Bi4Ti3O12高温压电陶瓷的微观结构、力学行为及电学性能研究[D]. 成都:四川大学, 2016. [23] 江冰, 方岱宁. 铁电材料的本构关系及相关问题研究进展[J]. 力学进展, 1998, 28(4):469-478. [24] HWANG S C, LYNCH C S, MCMEEKING R M. Ferroelectric/ferroelastic interactions and a polarization switching model[J]. Acta Metallurgica et Materialia, 1995, 43(5):2073-2084.
[25] SUN C T, JIANG L Z. Domain switching induced stresses at the tip of a crack in piezoceramics[C]//International Conference on Micromechanics, Intelligent Materials and Robotics.[s.l.]:[s.n.],1998:715-722.
[26] CHEN W, LYNCH C S. A micro-electro-mechanical model for polarization switching of ferroelectric materials[J]. Acta Materialia, 1998, 46(15):5303-5311.
[27] MCMEEKING R M, HWANG S C. On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching[J]. Ferroelectrics, 1997, 200(1):151-173.
[28] 吕炜. 铁电材料与形状记忆合金的宏细观本构研究[D].北京:清华大学, 1998. [29] HWANG S C, MCMEEKING R M. A finite element model of ferroelastic polycrystals[J]. International Journal of Solids and Structures, 1999, 36(10):1541-1556.
[30] FOTINICH Y, CARMAN G P. Nonlinear behavior of polycrystalline piezoceramics[C]//Smart Structures and Materials 2000:Active Materials:Behavior and Mechanics. Newport Beach, CA:International Society for Optics and Photonics, 2000, 3992:319-331.
[31] SUN C T, ACHUTHAN A. Domain switching criteria for piezoelectric materials[C]//Smart Structures and Materials 2001:Active Materials:Behavior and Mechanics. Newport Beach, CA:International Society for Optics and Photonics, 2001, 4333:240-250.
[32] ZHOU D Y, WANG Z G, KAMLAH M. Experimental investigation of domain switching criterion for soft lead zirconate titanate piezoceramics under coaxial proportional electromechanical loading[J]. Journal of Applied Physics, 2005, 97(8):084105.
[33] ZHANG Z K, FANG D N, SOH A K. A new criterion for domain-switching in ferroelectric materials[J]. Mechanics of Materials, 2006, 38(1/2):25-32.
[34] MENZEL A, AROCKIARAJAN A, SIVAKUMAR M. Two models to simulate rate-dependent domain switching effects:Application to ferroelastic polycrystalline ceramics[J]. Smart Materials and Structures, 2008, 17(1):015026.
[35] CUI Y Q, ZHONG Z. A novel criterion for nonuniform domain switching of tetragonal ferroelectrics[J]. Mechanics of Materials, 2012, 45:61-71.
[36] 陈浩森. 铁电材料动态断裂力学研究[D].北京:清华大学, 2015. [37] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
[38] SHANG J K, TAN X. Indentation-induced domain switching in Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal[J]. Acta Materialia, 2001, 49(15):2993-2999.
[39] LI Y W, LI F X. Domain switching criterion for ferroelectric single crystals under uni-axial electromechanical loading[J]. Mechanics of Materials, 2016, 93:246-256.
[40] KOZINOV S, KUNA M. Numerical investigation of crack propagation direction in ferroelectric actuators[C]//Behavior and Mechanics of Multifunctional Materials and Composites 2017. Portland, Oregon:International Society for Optics and Photonics, 2017:1016507.
[41] 张晖辉, 刘峰. 铁电陶瓷微观电畴演化的成核率模型[J]. 固体力学学报, 2010, 31(2):193-197. [42] MUÑOZ-SALDAÑA J, SCHNEIDER G A, ENG L M. Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy[J]. Surface Science, 2001, 480(1/2):402-410.
[43] YE W N, LU C J, ZHANG Y C, et al. Types and configurations of domain walls in ferroelectric Bi4Ti3O12 single crystals[J]. Journal of Applied Crystallography, 2015, 48(4):1080-1088.
[44] 钦小平. 低维磁性模型中钉扎-退钉扎相变的Monte Carlo模拟研究[D]. 杭州:浙江大学, 2012. [45] MCGILLY L J, FEIGL L, SETTER N. Dynamics of ferroelectric 180° domain walls at engineered pinning centers[J]. Applied Physics Letters, 2017, 111(2):022901.
[46] 郭莉莉. 微观结构对铁电电畴影响机理的相场理论研究[D].湘潭:湘潭大学, 2016. [47] 孙芮. 力-电场作用下铁电材料微观结构演变的相场模拟研究[D].兰州:兰州大学, 2016. [48] KRATZER M, LASNIK M, RÖHRIG S, et al. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy[J]. Scientific Reports, 2018, 8(1):422.
[49] ALIKIN D O, TURYGIN A P, WALKER J, et al. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics[J]. Acta Materialia, 2017, 125:265-273.
[50] 钱蓉, 张颖, 黄郁仲. PZT铁电陶瓷细观结构及其力学行为分析[J]. 西南交通大学学报, 1998, 33(1):53-57. [51] JIANG B, BAI Y, LI M, et al. In situ observation of correlations between domain switching and crack propagation in BaTiO3 single crystals under coupling of mechanical and electric loads[J]. Scripta Materialia, 2014, 70:47-50.
[52] 张飒. PLZT铁电陶瓷裂纹尖端附近畴变的原位Raman观测[J]. 机械工程材料, 2017, 41(6):20-24.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 0