• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

压电材料在振动控制领域的研究进展与应用现状

姚晓成, 赵程, 曾涛

姚晓成, 赵程, 曾涛. 压电材料在振动控制领域的研究进展与应用现状[J]. 机械工程材料, 2019, 43(6): 72-76. DOI: 10.11973/jxgccl201906014
引用本文: 姚晓成, 赵程, 曾涛. 压电材料在振动控制领域的研究进展与应用现状[J]. 机械工程材料, 2019, 43(6): 72-76. DOI: 10.11973/jxgccl201906014
YAO Xiaocheng, ZHAO Cheng, ZENG Tao. Research Progress and Application Status of Piezoelectric Materials for Vibration Control[J]. Materials and Mechanical Engineering, 2019, 43(6): 72-76. DOI: 10.11973/jxgccl201906014
Citation: YAO Xiaocheng, ZHAO Cheng, ZENG Tao. Research Progress and Application Status of Piezoelectric Materials for Vibration Control[J]. Materials and Mechanical Engineering, 2019, 43(6): 72-76. DOI: 10.11973/jxgccl201906014

压电材料在振动控制领域的研究进展与应用现状

基金项目: 

上海市优秀技术带头人项目(17XD1420300)

详细信息
    作者简介:

    姚晓成(1995-),男,江苏常熟人,硕士研究生

  • 中图分类号: TM282

Research Progress and Application Status of Piezoelectric Materials for Vibration Control

  • 摘要: 结合振动主动控制和被动控制原理,综述了应用于振动控制领域的单层压电陶瓷、多层叠堆压电陶瓷、压电纤维复合材料、0-3型压电复合材料等4种压电智能材料,重点介绍了其结构特点、制备工艺,以及在机械制造、航空航天和船舶航运等领域减振应用的研究进展,指出了压电材料的未来研究方向。
    Abstract: On the basis of active and passive vibration control principles, four piezoelectric smart materials used in vibration control field, including single layer piezoelectric ceramics, multi-stacked piezoelectric ceramics, piezoelectric fiber composite and 0-3 type piezoelectric composite, are reviewed. The research progress of the structural characteristics, preparation process of the materails and their application for vibration attenuation in the fields of machinery manufacturing, aerospace and marine shipping are highlighted. The research direction in future of the piezoelectric materials is proposed.
  • [1] 黄文虎,王心清,张景绘,等.航天柔性结构振动控制的若干新进展[J].力学进展,1997, 27(1):5-18.
    [2] 江冰, 李兴丹, 吴代华. Smart结构及其应用[J]. 力学进展, 1994, 24(3):353-361.
    [3] 董聪,夏人伟.智能结构设计与控制中的若干核心技术问题[J].力学进展,1996, 26(2):166-178.
    [4] 张启先,张玉茹.我国机械学研究的新进展与展望[J].机械工程学报,1996, 32(4):1-4.
    [5] 贺江平,钟发春.基于压电效应的减振技术和阻尼材料[J].振动与冲击,2005, 24(4):9-13.
    [6] 胡丰. 压电式振动能量采集技术的研究[D]. 西安:西安电子科技大学,2017.
    [7] 刘姝, 李中涛, 秦廷, 等. 压电陶瓷智能材料的风机叶片振动主动控制研究[J]. 大电机技术, 2015(4):59-64.
    [8] 汤琳. 浅议结构振动被动控制[J].城市建设理论研究(电子版),2011(21).
    [9] 杜洋. 浅谈压电材料在振动主动控制中的应用[J]. 科技创新与应用, 2017(1):23-23.
    [10]

    TAKENAKA T, OKUDA T, TAKEGAHARA K. Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3[J]. Ferroelectrics, 1997, 196(1):175-178.

    [11]

    JAFFE B, COOK W R, JAFFE H. Piezoelectric ceramics[M]. London:Academic Press,1971.

    [12] 包秀兰,陈燕. 锆钛酸铅压电陶瓷的制备工艺研究[J]. 陶瓷学报,2019, 40(2):153-158.
    [13]

    PRAVEENKUMAR B, KUMAR HH, KHARAT D K, et al. Investigation and characterization of La-doped PZT nanocrystalline ceramic prepared by mechanical activation route[J]. Materials Chemistry and Physics, 2008, 112(1):31-34.

    [14]

    WINDLE J, DERBY B. Ink jet printing of PZT aqueous ceramic suspensions[J]. Journal of Materials Science Letters, 1999, 18(2):87-90.

    [15]

    WANG T M, DERBY B. Ink-jet printing and sintering of PZT[J]. Journal of the American Ceramic Society, 2005, 88(8):2053-2058.

    [16]

    CHUA B W, LU L, LAI M O, et al. Investigation of complex additives on the microstructure and properties of low-temperature sintered PZT using the Taguchi method[J]. Journal of Alloys and Compounds,2005,386(1/2):303-310.

    [17]

    MIN J B, DUFFY K P, CHOI BB, et al. Numerical modeling methodology and experimental study for piezoelectric vibration damping control of rotating composite fan blades[J]. Computers & Structures, 2013, 128:230-242.

    [18]

    STRAUB F K, ANAND V R, BIRCHETTE T S, et al. Wind tunnel test of the SMART active flap rotor[C]//American Helicopter Society 65th Annual Forum and Technology Display. Grapevine, TX:American Helicopter Society, Inc., 2009:20090036811.

    [19]

    HALL S R, ANAND V R, STRAUB F K, et al. Active flap control of the SMART rotor for vibration reduction[C]//American Helicopter Society 65th Annual Forum and Technology Display. Grapevine, TX:American Helicopter Society, Inc., 2009:20090036805.

    [20]

    STRAUB F K, ANAND V R, LAU B H, et al. Wind tunnel test of the SMART active flap rotor[J]. Journal of the American Helicopter Society, 2018, 63(1):1-16.

    [21]

    LEMNIOS A Z, DUNN F K. Theoretical study of multicyclic control of a controllable twist rotor[R/OL]. (1976-04-01)[2019-03-02]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780025142.pdf.

    [22]

    LEMNIOS A Z, HOWES H E, NETTLES W E. Full scale wind tunnel tests of a controllable twist rotor[C]//32nd Annual National Forum. Washington, DC:American Helicopter Society, Inc., 1976:1064-1.

    [23] 李国荣,陈大任,沈卫,等. 多层片式PZT系压电陶瓷微位移器位移特性研究[J]. 功能材料, 1998(增刊1):491-493.
    [24] 陈万华, 王元兴, 沈星, 等. 压电叠堆主动减振的神经网络PID实时控制[J]. 南京航空航天大学学报, 2014, 46(4):587-593.
    [25]

    FANG M C, ZHUO Y Z, LEE Z Y. The application of the self-tuning neural network PID controller on the ship roll reduction in random waves[J]. Ocean Engineering, 2010, 37(7):529-538.

    [26]

    WILKIE K W, BRYANT R G, FOX R L, et al. Method of fabricating a piezoelectric composite apparatus:US6629341B2[P].2003-09-03.

    [27] 杜善义. 智能材料系统和结构[M]. 北京:科学出版社, 2001.
    [28] 易果. 压电纤维复合材料在船舰基本结构振动主动控制上的应用[D].哈尔滨:哈尔滨工业大学,2010.
    [29] 李坤, 李金华, 李锦春, 等. PLZT陶瓷纤维/环氧树脂1-3复合材料的制备和性能研究[J]. 无机材料学报, 2004, 19(2):361-366.
    [30]

    WILKIE W K, BRYANT R G, HIGH J W, et al. Low-cost piezocomposite actuator for structural control applications[C]//Smart structures and materials 2000:Industrial and commercial applications of smart structures technologies.[S.l.]:International Society for Optics and Photonics, 2000, 3991:323-335.

    [31]

    PAPPA R S, GIERSCH L R, QUAGLIAROLI J M. Photogrammetry of a 5 m inflatable space antenna with consumer-grade digital cameras[J]. Experimental Techniques, 2001, 25(4):21-29.

    [32]

    TARAZAGA P A, INMAN D J, WILKIE W K. Control of a space rigidizable inflatable boom using macro-fiber composite actuators[J]. Journal of Vibration and Control, 2007, 13(7):935-950.

    [33]

    TSUNOOKA T, SAITO S, YAMAMOTO T, et al. Piezoelectric composite material:US4917810[P]. 1990-4-17.

    [34] 张鸿名. 0-3型PZT/环氧压电复合材料性能预报及应用研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [35]

    EGUSA S, IWASAWA N. Poling characteristics of PZT/epoxy piezoelectric paints[J]. Ferroelectrics, 1993, 145(1):45-60.

    [36]

    NHUAPENG W, TUNKASIRI T. Properties of 0-3 lead zirconate titanate-polymer composites prepared in a centrifuge[J]. Journal of the American Ceramic Society, 2002, 85(3):700-702.

    [37] 张洪涛, 李波, 姚宝殿. PZT/环氧树脂0-3型压电复合材料性能的研究[J]. 兰州大学学报(自然科学版), 1998, 34(3):48-51.
    [38]

    NEWNHAM R E, SKINNER D P, CROSS L E. Connectivity and piezoelectric-pyroelectric composites[J]. Materials Research Bulletin, 1978, 13(5):525-536.

    [39] 秦岩, 黄志雄, 吴赞, 等. 压电阻尼复合材料在船舶承力轴承减振中的应用研究[J].武汉理工大学学报,2012,34(9):1-4.
    [40]

    TANIMOTO T. A new vibration damping CFRP material with interlayers of dispersed piezoelectric ceramic particles[J].Composites Science and Technology,2007,67(2):213-221.

    [41]

    KIM S Y, TANIMOTO T, UCHINO K, et al. Effects of PZT particle-enhanced ply interfaces on the vibration damping behavior of CFRP composites[J].Composites Part A:Applied Science and Manufacturing,2011,42(10):1477-1482.

计量
  • 文章访问数:  7
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-05-30
  • 刊出日期:  2019-06-19

目录

    /

    返回文章
    返回