Microstructure and Mechanical Properties of Mg/Al Multilayered Composite Sheet by Electrically-Assisted Accumulative Roll Bonding
-
摘要: 采用电流密度约1×108 A·m-2的电流辅助累积叠轧工艺制备镁/铝层状复合板,研究了不同道次(1~3道次)轧制后的微观形貌和力学性能,揭示了电流辅助工艺对复合板界面结合性能和界面金属间化合物形成的影响。结果表明:电流辅助累积叠轧后,镁/铝界面结合良好,随着叠轧道次的增加,镁层出现越来越严重的颈缩现象;电流的引入抑制了界面金属间化合物的形成,镁/铝界面处元素呈现互扩散特征,形成了厚约3 μm的原子扩散层,且其厚度并未随叠轧道次的增加而明显增大;随着叠轧道次的增加,复合板的抗拉强度和硬度均先增后降,伸长率则持续下降;镁层在电流辅助累积叠轧过程中发生的颈缩断裂以及电流对镁层和铝层的加速再结晶作用,导致3道次叠轧后复合板力学性能的降低。Abstract: Mg/Al multilayered composite sheets were fabricated by electrically-assisted accumulative roll bonding with a current density of about 1×108 A·m-2. The microstructure and mechanical properties after roll bonding with different number of cylces (1-3 cycles) were studied, and the effect of the electrically-assisted process on the interfacial bonding of the composite sheet and the formation of interfacial intermetallic compounds were revealed. The results show that after the electrically-assisted accumulative roll bonding, the interface between Mg/Al layers was well bonded. With the increase of the roll bonding cycle, the necking of the Mg layer became more and more severe. The introduction of current suppressed the formation of interfacial intermetallic compounds. The elements at the Mg/Al interface presented interdiffusion characteristics, and a 3 μm thick atomic diffusion layer was formed, whose thickness did not increase significantly with the increase of the roll bonding cycle. With the increase of the roll bonding cycle, the tensile strength and hardness of the composite sheet increased first and then decreased, while the elongation decreased. The necking and fracture of the Mg layer during the electrically-assisted accumulative roll bonding process and the accelerated recrystallization of the Mg and Al layers caused by the current resulted in the reduction of the mechanical properties of the composite sheet after three-pass roll bonding.
-
-
[1] GHADERI S H, MORI A, HOKAMOTO K. Analysis of explosively welded aluminum:AZ31 magnesium alloy joints[J]. Materials Transactions, 2008, 49(5):1142-1147.
[2] CHEN Z J, LIU Q, WANG G J, et al. Deformation inhomogeneities of Mg-Al laminated metal composites fabricated by accumulative roll bonding[J]. Materials Research Innovations, 2015, 19(S4):147-151.
[3] LIU F, LIANG W, LI X, et al. Improvement of corrosion resistance of pure magnesium via vacuum pack treatment[J]. Journal of Alloys and Compounds, 2008, 461(1):399-403.
[4] HUANG X, SUZUKI K, CHINO Y, et al. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys[J]. Materials Science and Engineering:A, 2015, 633:144-153.
[5] LIU X B, CHEN R S, HAN E H. Preliminary investigations on the Mg-Al-Zn/Al laminated composite fabricated by equal channel angular extrusion[J]. Journal of Materials Processing Technology, 2009, 209(10):4675-4681.
[6] VALIEV R Z, ISLAMGALIEV R K, ALEXANDROV I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science, 2000, 45(2):103-189.
[7] KAWASAKI M, AHN B, LEE H, et al. Using high-pressure torsion to process an aluminum-magnesium nanocomposite through diffusion bonding[J]. Journal of Materials Research, 2015, 31(1):88-99.
[8] 董传勇, 薛克敏, 李琦,等. 高压扭转法制备粉末块体超细晶材料[J]. 浙江科技学院学报, 2009, 21(3):206-209. [9] SAITO Y, TSUJI N, UTSUNOMIYA H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scripta Materialia, 1998, 39(9):1221-1227.
[10] SAITO Y, UTSUNOMIYA H, TSUJI N, et al. Novel ultra-high straining process for bulk materials:Development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia, 1999, 47(2):579-583.
[11] TSUJI N, SAITO Y, LEE S H, et al. ARB (Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials[J]. Advanced Engineering Materials, 2003, 5(5):338-344.
[12] JIANG L, PÉREZ-PRADO M T, GRUBER P A, et al. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding[J]. Acta Materialia, 2008, 56(6):1228-1242.
[13] LI B L, TSUJI N, KAMIKAWA N. Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding[J]. Materials Science and Engineering:A, 2006, 423(1/2):331-342.
[14] TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process[J]. Journal of Materials Science, 2007, 42(5):1673-1681.
[15] PÉREZ-PRADO M T, VALLE D, RUANO O A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding[J]. Scripta Materialia, 2004, 51(11):1093-1097.
[16] GHALANDARI L, MAHDAVIAN M M, REIHANIAN M. Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB)[J]. Materials Science and Engineering:A, 2014, 593:145-152.
[17] ZHANG X P, YANG T H, LIU J Q, et al. Mechanical properties of an Al/Mg/Al trilaminated composite fabricated by hot rolling[J]. Journal of Materials Science, 2010, 45(13):3457-3464.
[18] ZHANG X P, YANG T H, CASTAGNE S, et al. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling[J]. Materials Science and Engineering:A, 2011, 528(4/5):1954-1960.
[19] LUO C Z, LIANG W, CHEN Z Q, et al. Effect of high temperature annealing and subsequent hot rolling on microstructural evolution at the bond-interface of Al/Mg/Al alloy laminated composites[J]. Materials Characterization, 2013, 84:34-40.
[20] ZHANG B, YUAN S Q, CHEN Z W, et al. Interface properties of multi-layered Al/Mg alloy composites materials produced by accumulative roll bonding (ARB) process[C]//2015 International Conference on Advanced Material Engineering. Guangzhou:World Scientific, 2015.
[21] CHEN M C, HSIEH H C, WU W T. The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. Journal of Alloys and Compounds, 2006, 416(1/2):169-172.
[22] CHANG H, ZHENG M Y, GAN W M, et al. Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding[J]. Scripta Materialia, 2009, 61(7):717-720.
[23] NIE J F, LIU M X, WANG F, et al. Fabrication of Al/Mg/Al composites via accumulative roll bonding and their mechanical properties[J]. Materials, 2016, 9(11):951.
[24] WU K, CHANG H, MAAWAD E, et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)[J]. Materials Science and Engineering:A, 2010, 527(13/14):3073-3078.
[25] KLIMOV K M, NOVIKOV I I. Absence of strain hardening upon electrostimulated rolling of metals under cold conditions[J]. Doklady Physics, 2007, 52(7):359-360.
[26] BAZAYKIN V I, GROMOV V E, KUZNETSOV V A, et al. Mechanics of electrostimulated wire drawing[J]. International Journal of Solids and Structures, 1991, 27(13):1639-1643.
[27] 丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望[J]. 航空学报, 2018, 39(1):021201. [28] SHAO H, CAI L L, SHAN D, et al. Microstructure and high strength-ductility synergy of Ti-6Al-4V alloy induced by joule heat treatment[J]. Journal of Materials Science, 2018, 53(24):16609-16617.
[29] TROITSKII O A, LIKHTMAN V I. The anisotropy of the action of electron and gamma radiation on the deformation of zinc single crystals in the brittle state[J].Soviet Physics Doklady, 1963, 8:91-91.
[30] AGNEW S R, DUYGULU Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. International Journal of Plasticity, 2005, 21(6):1161-1193.
[31] LIU C Y, WANG Q, JIA Y Z, et al. Microstructures and mechanical properties of Mg/Mg and Mg/Al/Mg laminated composites prepared via warm roll bonding[J]. Materials Science and Engineering:A, 2012, 556:1-8.
[32] LEE K S, KIM J S, JO Y M, et al. Interface-correlated deformation behavior of a stainless steel-Al-Mg 3-ply composite[J]. Materials Characterization, 2013, 75:138-149.
[33] CHEN M C, KUO C W, CHANG C M, et al. Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys[J]. Materials Transactions, 2007, 48(10):2595-2598.
计量
- 文章访问数: 2
- HTML全文浏览量: 0
- PDF下载量: 0