Purification of NaCl-KCl Based Inclusion Removal Flux on A356 Aluminum Alloy Melt and Structure and Properties after Purification
-
摘要: 在NaCl-KCl基净化熔剂中分别添加10% NaF、10% NaF+2% Na2SO4+4% Na2CO3、3% NaF+2% Na2SO4+4% Na2CO3+7% Na3AlF6(均为质量分数)制备得到3种排杂熔剂(熔剂I、熔剂Ⅱ、熔剂Ⅲ),并对A356铝合金熔体进行净化处理,研究了不同熔剂的净化效果及净化后合金的显微组织和拉伸性能。结果表明:3种排杂熔剂均提高了铝合金的冶金质量,净化处理后的组织中夹杂物含量减少、尺寸减小,铝液中的氢含量降低,合金的抗拉强度和伸长率提高;熔剂Ⅲ的净化效果最佳,且最佳添加量(质量分数)为2%,净化处理后的基体组织均为等轴晶,主要断裂模式为穿晶微孔(韧窝)聚集型韧性断裂。Abstract: Three inclusion removal fluxes (Flux Ⅰ, Flux Ⅱ, Flux Ⅲ) were prepared by adding 10wt%NaF, 10wt%NaF+2wt%Na2SO4+4wt%Na2CO3, 3wt%NaF+2wt%Na2SO4+4wt%Na2CO3+7wt%Na3AlF6 into NaCl-KCl based purification flux, respectively, and then were used to purify A356 aluminum alloy melt. The purification effect of different fluxes and the microstructure and tensile properties of the alloy after purification were studied. The results show that all the three inclusion removal fluxes improved the metallurgical quality of the aluminum alloy. The content and size of inclusions in the microstructure after purification were reduced, the hydrogen content in the liquid aluminum decreased, and the tensile strength and elongation of the alloy increased. The purification effect of the flux Ⅲ was the best, and the optimal addition amount was 2wt%; the purified matrix structure consisted of equiaxed grains, and the main fracture mode was transgranular micropore (dimples) aggregate ductile fracture.
-
Keywords:
- A356 aluminum alloy /
- inclusion removal flux /
- melt purification /
- microstructure /
- tensile property
-
-
[1] TILAK R, SONG G. 铝熔体精炼系统之净化效率:中国铸造现代化战略中的重要环节[J]. 有色金属再生与利用, 2004(2):12-14. [2] ISSHIKI M, MIMURA K, UCHIKOSHI M. Preparation of high purity metals for advanced devices[J]. Thin Solid Films, 2011, 519(24):8451-8455.
[3] KELES O, DUNDAR M. Aluminum foil:Its typical quality problems and their causes[J]. Journal of Materials Processing Technology, 2007, 186(1/2/3):125-137.
[4] 李建国, 王亮, 杨文言. A356铝合金中裂纹的萌生及其扩展[J]. 轻合金加工技术, 2002, 30(12):30-34. [5] CAMPBELL J. Entrainment defects[J]. Materials Science and Technology, 2006, 22(2):127-145.
[6] 柯东杰, 王祝堂. 当代铝熔体处理技术[M]. 北京: 冶金工业出版社, 2010. [7] ZUO M, ZHAO D G, TENG X Y, et al. Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloys[J]. Materials & Design, 2013, 47: 857-864.
[8] QIU K, WANG R C, PENG C Q, et al. Effect of individual and combined additions of Al-5Ti-B, Mn and Sn on sliding wear behavior of A356 alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3886-3892.
[9] 胡星晔, 傅高升, 陈鸿玲, 等. 高性能铝合金用排杂净化熔剂组成的设计与优化试验[C]//福建省科协第五届学术年会数字化制造及其它先进制造技术专题学术年会论文集.厦门: 福建省机械工程学会, 2005. [10] 傅高升, 康积行, 陈文哲, 等. 铝熔体中夹杂物与气体相互作用的关系[J]. 中国有色金属学报, 1999, 9(增刊1): 51-56. [11] 傅高升, 康积行. 铝熔体中熔剂的净化作用特性分析[J]. 铸造技术, 1995(6):23-26. [12] 李培杰, 郭景杰, 贾均, 等. 铝熔体熔剂精炼的热力学及动力学分析[J]. 材料科学与工艺, 1995(3):82-86. [13] 阮中慈.图像分析仪定量分析中测量参数的选择[J].材料工程,1995(6):38-39. [14] 官可湘, 李洁, 倪大兴. 铝及铝合金熔体净化剂研究进展[J]. 化学世界, 2007, 48(6): 370-373. [15] 张宇. 金属铝在冰晶石体系中溶解度的研究[D]. 沈阳:东北大学, 2015. [16] 张承甫. 液态金属的净化与变质[M]. 上海: 上海科学技术出版社, 1989.
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 2