Microstructure and Mechanical Properties of Ni5Al/Al2O3-3%TiO2 Composite Structural Coating by Atmospheric Plasma Spraying
-
摘要: 采用大气等离子喷涂(APS)技术在6061铝合金基体表面预制Ni5Al合金黏结层,再在黏结层上喷涂Al2O3-3% TiO2陶瓷层,研究了涂层的物相组成、微观形貌、显微硬度、结合强度、耐磨性能和耐腐蚀性能,分析了其拉伸断裂机理。结果表明:陶瓷层的物相主要由α-Al2O3、γ-Al2O3和锐钛矿型TiO2组成;黏结层与基体以及黏结层与陶瓷层均形成了机械结合,但黏结层与基体的结合界面更致密;与基体相比,涂层的显微硬度更高、耐腐蚀性能和耐磨性能更优;涂层的结合强度低于黏结层的,其拉伸断裂位置多在黏结层和陶瓷层之间的界面处以及陶瓷层内部,界面处的拉伸断裂形式为混合断裂,黏结层上的为韧性断口,陶瓷层上的为脆性断口。Abstract: Ni5Al alloy adhesive coating was pre-prepared on the surface of 6061 aluminum alloy substrate, and then Al2O3-3%TiO2 ceramic coating was prepared on the adhesive coating by atmospheric plasma spraying (APS) technique. The phase composition, micromorphology, microhardness, bonding strength, wear resistance and corrosion resistance of the coating were studied, and the tensile fracture mechanism was analyzed. The results show that the phases in the creamic coating mainly consisted of α-Al2O3, γ-Al2O3 and anatase TiO2. Mechanical bonding was formed between adhesive coating and substrate, and between adhesive coating and ceramic coating, but the bonding interface between the adhesive coating and substrate was more dense. Compared with the substrate, the coating had higher microhardness, better corrosion resistance and better wear resistance. The bonding strength of the coating was lower than that of the adhesive coating. The tensile fracture mostly occured at interfaces between the adhesive coating and ceramic coating, and also in the ceramic coating. The tensile fracture mode at the interface was mixed fracture; the adhesive coating had a ductile fracture, and the ceramic coating had a brittle fracture.
-
-
[1] 田庆敏.车辆轻量化材料的应用[J].农业装备技术,2017,43(5):62-64. [2] 裴建杰,许志华.汽车轻量化材料的应用[J].专用汽车,2011(10):64-65. [3] 王群,丁彰雄,陈振华,等.HVOF制备亚微米结构WC-12Co涂层性能研究[J].湖南大学学报(自然科学版),2007,34(32):56-59. [4] 戴遐明. 纳米陶瓷材料及其应用[M]. 北京:国防工业出版社, 2005. [5] 王全胜, 王富耻, 柳彦博, 等. 等离子喷涂纳米Al2O3-13%TiO2涂层组织与性能[J]. 稀有金属材料与工程, 2007, 36(增刊2):530-532. [6] 宋仁国, 王超, 卢果. 等离子喷涂Al2O3-40%TiO2陶瓷复合层的微观结构及耐磨性能[J]. 材料保护, 2012, 45(8):58-59. [7] 刘前. 大气等离子喷涂Al2O3-40%TiO2复合陶瓷涂层的组织与性能研究[D]. 青岛:青岛理工大学, 2015. [8] 马然,贺定勇,蒋建敏.Al2O3含量对等离子喷涂TiO2-Al2O3陶瓷涂层组织性能的影响[J].中国表面工程,2010,23(2):60-63. [9] 徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2002:1-5. [10] 贾胜凯. 等离子喷涂及激光重熔Al2O3-TiO2涂层的性能研究[D]. 济南:山东大学, 2015. [11] 戴达煌, 周克崧, 袁镇海. 现代材料表面技术科学[M]. 北京:冶金工业出版社, 2004. [12] PARCO M, ZHAO L D, ZWICK J, et al. Investigation of particle flattening behaviour and bonding mechanisms of APS sprayed coatings on magnesium alloys[J]. Surface and Coatings Technology, 2007, 201(14):6290-6296.
[13] LIN X H, ZENG Y, LEE S W, et al. Characterization of alumina-3wt.% titania coating prepared by plasma spraying of nanostructured powders[J]. Journal of the European Ceramic Society, 2004, 24(4):627-634.
[14] 方学锋, 王泽华, 刘腾彬. 铝合金热喷涂技术的研究进展和应用展望[J]. 轻合金加工技术, 2005, 33(10):13-15. [15] 刘岗. 高锰钢上等离子熔覆镍基合金数值模拟与组织性能分析[D]. 广州:广东工业大学, 2016. [16] 王国阳, 李利, 武笑宇. 等离子喷涂氧化铝涂层界面状态和结合性能的研究[J]. 材料开发与应用, 2012, 27(3):23-27. [17] 田宗军, 王东生, 沈理达, 等. 等离子喷涂纳米Al2O3-13TiO2陶瓷涂层研究[J]. 稀有金属材料与工程, 2009, 38(10):1740-1744. [18] 何龙, 谭业发, 屠义强, 等. 铝合金表面纳米Al2O3-40%TiO2复相陶瓷涂层力学与摩擦学性能[J]. 机械工程学报, 2013, 49(2):79-86.
计量
- 文章访问数: 11
- HTML全文浏览量: 0
- PDF下载量: 0