Microstructure and Tensile Properties of AA2024 Aluminum Alloy after Hot Forming with Synchronous Cooling and Aging
-
摘要: 在435~505℃下对H18态AA2024铝合金板料进行同步冷却热成形,并在150~230℃下时效处理4~12 h,研究了时效后的显微组织和拉伸性能。结果表明:同步冷却热成形+时效后,试验合金中的主要强化相为Al2CuMg相;随时效温度的升高,Al2CuMg相的尺寸增大、数量变多,时效时间对该相的影响较小;试验合金的抗拉强度和屈服强度随成形温度的升高而增大,随时效温度的升高先增大后减小;在成形温度不高于475℃条件下,试验合金的抗拉强度和屈服强度随时效时间的延长呈先增大后降低的变化趋势,并在时效8 h时达到峰值,在成形温度高于475℃条件下,时效时间对合金强度的影响很小。Abstract: AA2024-H18 aluminum alloy sheet was hot formed at 435-505℃ with synchronous cooling, and then aged at 150-230℃ for 4-12 h. The microstructure and mechanical properties after aging were studied. The results show that the main strengthening phase in the test alloy after hot forming with synchronous cooling and aging was Al2CuMg. The size and quantity of Al2CuMg phase increased with the aging temperature, however, the aging time had little effect on Al2CuMg phase. The tensile strength and yield strength of the test alloy increased with the increase of the forming temperature, and increased first and then decreased with the increase of the aging temperature. When the forming temperature was not higher than 475℃, the tensile strength and yield strength of the test alloy increased first and then decreased, and reached peak values when aging for 8 h. When the forming temperature was higher than 475℃, the aging time had little influence on the strength of the alloy.
-
-
[1] CHEN M H, CAO Y Y, CHEN W, et al. Research on synchronized cooling hot forming process of 6016 aluminum alloy[J].Advanced Materials Research, 2012, 452/453:81-85.
[2] 曹园园, 陈明和, 王小芳,等. 6181H18铝合金同步冷却热成形工艺研究[J]. 航空制造技术,2012(5):81-84. [3] CHEN G L, CHEN M H, WANG N, et al. Hot forming process with synchronous cooling for AA2024 aluminum alloy and its application[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86:133-139.
[4] HIRSCH J. Aluminium in innovative light-weight car design[J].Materials Transactions, 2011, 52(5):818-824.
[5] WANG L, STRANGWOOD M, BALINT D, et al. Formability and failure mechanisms of AA2024 under hot forming conditions[J].Materials Science and Engineering:A, 2011, 528(6):2648-2656.
[6] 桂奇文. 热处理工艺对2024铝合金析出相及性能的影响[D]. 长沙:湖南大学, 2012. [7] TAYLOR B, LANNING H W. Warm forming of aluminum-production systems[J]. Society for the Advancement of Materials and Process Engineering, 1980, 25:471-480.
[8] 周国伟,李大永,彭颖红. 7075-T6高强度铝合金温热条件下的拉深成形性能[J].上海交通大学学报, 2012, 46(9):1482-1486. [9] 陈国亮,陈明和,王宁,等.AA2024-H18铝合金同步冷却热成形后的强化机制[J].中国有色金属学报,2017,27(7):1337-1343. [10] GARRETT R P, LIN J, DEAN T A. Solution heat treatment and cold Die quenching in forming AA 6xxx sheet components:Feasibility study[J].Advanced Materials Research, 2005, 6:673-680.
[11] MOHAMED M S, FOSTER A D, LIN J G, et al. Investigation of deformation and failure features in hot stamping of AA6082:Experimentation and modelling[J].International Journal of Machine Tools and Manufacture, 2012, 53(1):27-38.
[12] WANG N, CHEN G L, CHEN M H. Constitutive relationship and parameters optimization of 6181 H18 aluminum alloy hot forming process with synchronous cooling[J].Materials Science Forum, 2013, 770:324-328.
[13] 曹园园. 6181/6016H18高强铝合金同步冷却热成形工艺研究[D]. 南京:南京航空航天大学, 2011. [14] 李学朝. 铝合金材料组织与金相图谱[M]. 北京:冶金工业出版社, 2010. [15] 贺双喜, 刘向阳, 谢广辉,等. 时效制度对2A12铝合金组织与性能的影响[J]. 金属热处理, 2014(6):94-96. [16] 王祝堂. 2024型铝合金的热处理[J]. 金属世界, 2009(2):43-48.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 0