Preparation and Exothermic Properties of Ni/Al Multilayer Laminates by Composite Methods
-
摘要: 在纯铝箔上化学镀镍得到微米级厚度的镍层,再将该镀镍铝箔堆垛热压后进行累积叠轧(1~7道次),得到Ni/Al多层板,研究了该多层板的组织结构及放热性能。结果表明:化学镀镍层为非晶态,在热压过程中发生晶化;随着叠轧道次的增加,镍层逐渐发生颈缩和断裂,其碎片镶嵌在铝中,增加了镍和铝的接触面积,从而提高了Ni/Al多层板的放热性能,其能量密度由1道次的520.27 J·g-1增大到7道次的1 203.4 J·g-1,达到理论值的87.15%;不同道次叠轧Ni/Al多层板的起始反应温度均高于475℃,说明该多层板具有良好的室温稳定性。Abstract: A micron-thick nickle layer on pure aluminum foils was obtained by electroless nickel plating. The nickel plated aluminum foils were stacked, hot pressed and accumulative rolling bonded (1-7 passes) to prepare Ni/Al multilayer laminates. The microstructure and exothermic properties of the multilayer laminates were investigated. The results show that the electroless nickel plated layer was amorphous and crystallized during the subsequent hot pressing process. With the increase of the accumulative rolling pass, the nickel layer gradually necked and fractured. The nickel fragments were embedded in the aluminum, increasing the contact area between nickel and aluminum, leading to an increase of the exothermic properties of the Ni/Al multilayer laminates; the energy density of the laminates increased from 520.27 J·g-1 with 1 pass to 1 203.4 J·g-1 with 7 passes, which was 87.15% of the theoretical value. The initial reaction temperatures of the Ni/Al multilayer laminates accumulative rolling bonded with different passes were all higher than 475℃, indicating that the multilayer laminates had good stability at room temperature.
-
-
[1] 吴人洁. 复合材料的未来发展[J]. 机械工程材料, 1994, 18(1):16-20. [2] CAO J, SONG X G, WU L Z, et al. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet[J]. Thin Solid Films, 2012, 520(9):3528-3531.
[3] SIMÕES S, VIANA F, KOÇAK M, et al. Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Ni foils[J]. Materials Chemistry and Physics, 2011, 128(1/2):202-207.
[4] CAO J, FENG J C, LI Z R. Microstructure and fracture properties of reaction-assisted diffusion bonding of TiAl intermetallic with Al/Ni multilayer foils[J]. Journal of Alloys and Compounds, 2008, 466(1/2):363-367.
[5] SIMÕES S, VIANA F, VIEIRA M F. Reactive commercial Ni/Al nanolayers for joining lightweight alloys[J]. Journal of Materials Engineering and Performance, 2014, 23(5):1536-1543.
[6] 门建兵, 蒋建伟, 帅俊锋, 等. 复合反应破片爆炸成型与毁伤试验研究[J]. 北京理工大学学报, 2010, 30(10):1143-1146. [7] 中国科学技术协会. 2012-2013兵器科学技术学科发展报告(含能材料)[M]. 北京:中国科学技术出版社, 2014. [8] SHUCK C E, PAULS J M, MUKASYAN A S. Ni/Al energetic nanocomposites and the solid flame phenomenon[J]. The Journal of Physical Chemistry C, 2016, 120(47):27066-27078.
[9] MOZAFFARI A, HOSSEINI M, MANESH H D. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing[J]. Journal of Alloys and Compounds, 2011, 509(41):9938-9945.
[10] MA E, THOMPSON C V, CLEVENGER L A, et al. Self-propagating explosive reactions in Al/Ni multilayer thin films[J]. Applied Physics Letters, 1990, 57(12):1262-1264.
[11] YANG C, HU Y, SHEN R Q, et al. Fabrication and performance characterization of Al/Ti multilayer energetic films[J]. Advanced Materials Research, 2012, 557/558/559:1782-1786.
[12] 金晓云, 胡艳, 沈瑞琪, 等. Al/Ni纳米复合含能材料的制备及其激光点火性能研究[J]. 爆破器材, 2012, 41(3):12-15. [13] 张永丽, 杨慧群. 新型含能材料的研究进展[J]. 兵器装备工程学报, 2012, 33(2):123-125. [14] NORO J, RAMOS A S, VIEIRA M T. Intermetallic phase formation in nanometric Ni/Al multilayer thin films[J]. Intermetallics, 2008, 16(9):1061-1065.
[15] GUO X G, LI X M, LI H R, et al. A comprehensive investigation on the electrophoretic deposition (EPD) of nano-Al/Ni energetic composite coatings for the combustion application[J]. Surface and Coatings Technology, 2015, 265:83-91.
[16] 王亮, 何碧, 蒋小华,等. Al/Ni多层膜中反应波传播速度的理论研究[J]. 含能材料, 2009, 17(2):233-235. [17] 赵国志,张运法,王晓鸣.战术导弹战斗部毁伤作用机理[M].南京:南京理工大学出版社,2002. [18] 黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究[J]. 含能材料, 2007, 15(6):566-569. [19] STOVER A K, KRYWOPUSK N M, GIBBINS J D, et al. Mechanical fabrication of reactive metal laminate powders[J]. Journal of Materials Science, 2014, 49(17):5821-5830.
[20] SAITO Y, UTSUNOMIYA H, TSUJI N, et al. Novel ultra-high straining process for bulk materials development of the accumulative roll bonding (ARB) process[J]. Acta Materialia, 1999,47(2):579-583.
[21] SIMÕES S, RAMOS A S, VIANA F, et al. Ni/Al multilayers produced by accumulative roll bonding and sputtering[J]. Journal of Materials Engineering & Performance, 2016, 25(10):4394-4401.
[22] 何焕. 铝及铝合金化学镀镍的工艺[J]. 企业科技与发展, 2010(16):59-61. [23] BOSLOUGH M B. Shock-induced chemical reactions in nickel-aluminum powder mixtures:Radiation pyrometer measurements[J]. Chemical Physics Letters, 1989, 160(5/6):618-622.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 0