Effect of Cooling Rate After Rolling on Microstructure and Mechanical Properties of 22 mm Thick X80M Hot Rolled Strip Steel
-
摘要: 通过热模拟试验测定X80M管线钢铸坯的连续冷却转变(CCT)曲线,确定了合理的冷却速率范围;利用2 250 mm热连轧机组进行工业试制试验,研究了冷却速率(5,15,25℃·s-1)对X80M带钢显微组织、力学性能和抗落锤撕裂性能的影响,确定了最佳冷却速率;在最佳冷却速率下进行22 mm厚X80M带钢的批量生产,研究了其显微组织、力学性能和抗落锤撕裂性能。结果表明:当冷却速率为20~30℃·s-1时,可得到有利于试验钢性能的由针状铁素体、粒状贝氏体和弥散分布M/A岛组成的显微组织;当冷却速率由5℃·s-1提高到25℃·s-1时,工业试制带钢组织中的M/A岛变得细小,分布更加弥散,最佳冷却速率为25℃·s-1;批量生产X80M带钢的晶粒细小,组织均匀,其抗落锤撕裂性能、拉伸性能和冲击韧性均满足中石油管线采购要求。
-
关键词:
- 落锤撕裂试验(DWTT) /
- CCT曲线 /
- 针状铁素体 /
- 冷却速率
Abstract: Continuous cooling transformation (CCT) curves of X80M pipeline steel ingot were measured by thermal simulation test, and a reasonable cooling rate range was determined. The industrial trial manufacturing test was conducted with a 2 250 mm continuous hot rolling mill. The effects of cooling rate (5, 15, 25℃·s-1) on the microstructure, mechanical properties and resistance to drop-weight tearing of the X80M strip steel were studied, and the optimal cooling rate was determined. At the optimal cooling rate, the 22 mm thick X80M strip steel was produced in batches, and its microstructure, mechanical properties and resistance to drop-weight tearing were investigated. The results show that when the cooling rate was between 20-30℃·s-1, a microstructure consisting of acicular ferrite, granular bainite, and dispersed M/A island was obtained, which was beneficial to the performance of the test steel. When the cooling rate increased from 5℃·s-1 to 25℃·s-1, the M/A island in the structure of the industrial trial manufactured strip steel became smaller and the distribution was more diffuse; the optimal cooling rate was 25℃·s-1. The batch-produced X80M strip steel had fine grains and a uniform structure, and its resistance to drop-weight tearing, tensile properties and impact toughness all met the requirements of PetroChina pipeline procurement standards.-
Keywords:
- drop-weight tear test (DWTT) /
- CCT curve /
- acicular ferrite /
- cooling rate
-
-
[1] 徐景涛. X80管线钢在长输管道中的应用及展望[J]. 中国冶金, 2016, 26(8):1-7. [2] 任毅, 张帅, 王爽. 组织形貌对X80管线钢性能影响[J]. 北京科技大学学报, 2007, 29(8):798-802. [3] 周晓光,曾才有,杨浩,等.超快冷条件下X80管线钢的组织性能[J].中南大学学报(自然科学版),2014,45(9):2972-2976. [4] 张骁勇, 高惠临, 徐学利, 等. X80大变形管线钢的变形与断裂行为[J]. 材料热处理学报, 2014, 35(2):75-81. [5] 孙莹, 于庆波. 多边形铁素体含量对X60、X70管线钢DWTT断口纤维率的影响[J]. 材料热处理学报, 2014, 35(3):105-110. [6] 杨扬, 李为卫. 高强度管线钢DWTT性能研究[J]. 焊管, 2010, 33(10):74-79. [7] 王莹, 赵征志, 朱涛. X100高强度管线钢的组织与力学性能[J]. 材料热处理学报, 2012, 33(11):117-121. [8] 牛涛,吴新朗,安成钢,等.超快冷对厚规格X80管线钢组织性能的影响[J].材料研究学报, 2016,30(8):621-626. [9] 赵明纯, 单以银, 肖福仁, 等. 管线钢中针状铁素体的形成及其强韧性的分析[J]. 材料科学与工艺, 2001, 9(4):356-358. [10] 于庆波,孙莹, 刘相华, 等. 多边形铁素体的体积分数和大小对管线钢落锤撕裂性能的影响[J]. 机械工程学报, 2011, 47(24):44-49. [11] 徐平光, 方鸿生, 白秉哲, 等. 仿晶界型铁素体/粒状贝氏体复相组织的韧性[J]. 金属学报, 2002, 38(3): 255-260. [12] 于庆波, 段贵生, 孙莹, 等. 粒状贝氏体组织对低碳钢力学性能的影响[J]. 钢铁, 2008, 43(7): 68-71. [13] 廖波, 肖福仁. 针状铁素体管线钢组织及强韧化机理研究[J]. 材料热处理学报, 2009, 30(2): 57-62. [14] 郑晓飞, 康永林, 孟德亮, 等. 终轧温度对X80抗大变形管线钢组织性能的影响[J]. 北京科技大学学报, 2011, 33(5): 557-562. [15] 刘文斌, 康永林, 牛涛, 等. 热连轧生产厚规格X80管线钢的静态再结晶行为及工艺优化[J]. 北京科技大学学报, 2010, 32(4): 444-449. [16] 王权, 武鹏祥, 孙婷婷, 等. 控轧控冷条件下X100管线钢的组织转变及性能[J]. 金属热处理, 2016, 41(11): 21-25. [17] 孙昊, 赵凤光, 王海燕, 等. 终冷温度对X80管线钢DWTT性能影响的研究[J]. 热加工工艺, 2013, 42(1): 32-34. [18] 张红梅, 王宏斌, 刘振宇, 等. X70微合金管线钢组织中针状铁素体细化机制的研究[J]. 材料热处理学报, 2006, 27(6): 99-102. [19] 阮红志, 赵爱民, 赵征志, 等. 高钢级X100管线钢中的M-A岛[J]. 北京科技大学学报, 2013, 35(4): 474-480. [20] 杨景红, 刘清友, 孙冬柏, 等. 轧制工艺对微合金管线钢组织及M/A岛的影响[J]. 北京科技大学学报, 2009, 31(2): 180-185. [21] 邓伟, 高秀华, 秦小梅, 等. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966. [22] 李红英, 魏冬冬, 林武, 等. X80管线钢冲击韧性研究[J]. 材料热处理学报, 2010, 31(11): 73-78.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 0