• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

钛基复合材料TIG焊接接头的显微组织和拉伸性能

潘玉维, 毛建伟, 张立新

潘玉维, 毛建伟, 张立新. 钛基复合材料TIG焊接接头的显微组织和拉伸性能[J]. 机械工程材料, 2020, 44(5): 1-5,53. DOI: 10.11973/jxgccl202005001
引用本文: 潘玉维, 毛建伟, 张立新. 钛基复合材料TIG焊接接头的显微组织和拉伸性能[J]. 机械工程材料, 2020, 44(5): 1-5,53. DOI: 10.11973/jxgccl202005001
PAN Yuwei, MAO Jianwei, ZHANG Lixin. Microstructure and Tensile Properties of Titanium Matrix Composite TIG Welded Joint[J]. Materials and Mechanical Engineering, 2020, 44(5): 1-5,53. DOI: 10.11973/jxgccl202005001
Citation: PAN Yuwei, MAO Jianwei, ZHANG Lixin. Microstructure and Tensile Properties of Titanium Matrix Composite TIG Welded Joint[J]. Materials and Mechanical Engineering, 2020, 44(5): 1-5,53. DOI: 10.11973/jxgccl202005001

钛基复合材料TIG焊接接头的显微组织和拉伸性能

基金项目: 

国家自然科学基金资助项目(U1602274,51875349,51741108);中国航空科学基金资助项目(20173625005)

详细信息
    作者简介:

    潘玉维(1978-),女,河北唐山人,高级工程师,学士

  • 中图分类号: TG442

Microstructure and Tensile Properties of Titanium Matrix Composite TIG Welded Joint

  • 摘要: 采用非熔化极惰性气体钨极保护(TIG)焊技术对非连续增强钛基复合材料进行焊接,研究了焊接接头的显微组织与拉伸性能。结果表明:TIG焊接可较好地实现钛基复合材料的连接,焊缝成形良好,表面均匀洁净,未见微裂纹、气孔等焊接缺陷;接头由焊缝区、热影响区和母材区组成;接头中焊缝区和靠近焊缝的热影响区中β相晶界上分布的增强体TiB具有较高的长径比,细化程度较高,同时焊缝区和靠近焊缝的热影响区中存在大量针状马氏体α'相;接头的抗拉强度为1 137 MPa,为母材的92%,断后伸长率为2.20%;接头拉伸时均在母材区断裂,拉伸断口主要呈韧性断裂特征,部分区域呈沿晶断裂特征。
    Abstract: Discontinuously reinforced titanium matrix composite was welded by tungsten inert gas welding (TIG) technique. The microstructure and tensile properties of the welded joint were studied. The results show that TIG welding can well realize the connection of titanium matrix composite. The weld had the good formation with an even and clean surface, and no welding defects such as microcracks and pores were found. The joint consisted of weld zone, heat-affected zone and base metal zone. The TiB reinforcements distributed on the boundaries of β phase in the weld zone and the heat affected zone near the weld in the joint had high aspect ratios with a high degree of refinement, and there were a large number of acicular matensite α' phase in the two regions. The tensile strength of the joint was 1 137 MPa, 92% of that of the base metal, and the percentage elongation after fracture was 2.20%. The joint fractured at the base metal zone during tensile; the tensile fracture of the joint was mainly characterized by ductile fracture, and local areas showed intergranular fracture features.
  • [1] 罗国珍.钛基复合材料的研究与发展[J]. 稀有金属材料与工程, 1997, 26(2):1-7.
    [2] 邓炬. 我国钛科学的发展动向和新进展[J]. 稀有金属材料与工程, 1997, 26(1):7-10.
    [3]

    JOHNSON A,WRIGHT P.Application of advanced materials to aircraft gas turbine engines[C]//26th Joint Propulsion Conference. Orlando:AIAA, 1990.

    [4]

    LU W J,ZHANG D,ZHANG X N,et al.Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J].Journal of Alloys and Compounds,2001,327(1/2):248-252.

    [5] 毛小南,周廉,周义刚,等.TP-650颗粒增强钛基复合材料的性能与组织特征[J].稀有金属材料与工程,2004,33(6):620-623.
    [6] 肖代红,黄伯云.原位合成钛基复合材料的最新进展[J].粉末冶金技术,2008,26(3):217-223.
    [7]

    TJONG S C,MA Z Y.Microstructural and mechanical characteristics of in situ metal matrix composites[J].Materials Science and Engineering:R,2000,29(3/4):49-113.

    [8] 张胜玉.钛基复合材料的焊接[J].焊接技术,2000,29(5):49.
    [9]

    GOFREY T M T,GOODWIN P S,WARD-CLOSE C M.Titanium particulate metal matrix composites:Reinforcement,production methods,and mechanical properties[J].Advanced Engineering Materials, 2000,2(3):85-91.

    [10] 吕维洁,张荻.原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社,2005:2-3.
    [11] 于治水,李瑞峰,祁凯.金属基复合材料连接方法研究综述[J].热加工工艺,2006(2):44-48.
    [12]

    SHORTA B.Gas tungsten arc welding of α+β titanium alloys:A review[J].Materials Science and Technology, 2009,25(3):309-324.

    [13]

    HIROSE A,KOTOH M,FUKUMOTO S,et al.Diffusion bonding of SiC fibre reinforced Ti-6Al-4V alloy[J].Materials Science and Technology, 1992,8(9):811-816.

    [14]

    DA SILVA A A M,MEYER A,SANTOS J F D,et al.Mechanical and metallurgical properties of friction-welded TiC particulate reinforced Ti-6Al-4V[J].Composites Science and Technology, 2004,64(10/11):1495-1501.

    [15]

    HIROSE A,MATSUHIRO Y,KOTOH M,et al.Laser-beam welding of SiC fibre-reinforced Ti-6Al-4V composite[J].Journal of Materials Science, 1993,28(2):349-355.

    [16]

    NORRISH J.Advanced welding processes[M]. Cambridge:Woodhead Publishing Limited, 2006:95-101.

    [17]

    SEN I,TAMIRISAKANDALA S,MIRACLE D B,et al.Microstructural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys[J].Acta Materialia,2007,55(15):4983-4993.

    [18]

    TAMIRISAKANDALA S,BHAT R B,MIRACLE D B,et al.Effect of boron on the beta transus of Ti-6Al-4V alloy[J].Scripta Materialia, 2005,53(2):217-222.

    [19]

    KOOM Y,PARK J S,PARK M K,et al.Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4V composites[J].Scripta Materialia, 2012,66(7):487-490.

    [20]

    HUANG L J,GENG L,PENG H X,et al.High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture[J].Materials Science and Engineering:A, 2012,534:688-692.

    [21]

    MAO J W,LU W J,WANG L Q,et al.Microstructures and mechanical properties in laser beam welds of titanium matrix composites[J].Science and Technology of Welding and Joining, 2014,19(2):142-149.

    [22] 赵颖,龙丹,赵勇,等.钛合金蒙皮骨架结构激光焊接工艺与组织研究[J].热加工工艺,2012,41(7):149-152.
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-12
  • 修回日期:  2020-04-15
  • 刊出日期:  2020-05-19

目录

    /

    返回文章
    返回