Effect of Nanosecond Laser Machining and Heat-Treatment on Wettability of Pure Aluminum Surface
-
摘要: 采用纳秒激光加工技术在纯铝板表面制备微纳米结构,之后进行150 ℃×2 h的热处理,研究激光扫描间距(0.005~0.020 mm)、扫描速度(100~1 700 mm·s-1)与热处理对激光烧蚀表面润湿性的影响。结果表明:不同工艺参数下激光烧蚀后纯铝板表面均形成了相对规则的微纳米网格结构;激光烧蚀后的纯铝板表面为超亲水表面,再经热处理后变为疏水表面或超疏水表面;随着扫描速度和扫描间距的增大,激光烧蚀和热处理后,纯铝板表面的接触角变化不明显,滑动角增大,表现出不同程度的润湿性;在激光扫描速度为100 mm·s-1,扫描间距为0.005 mm下激光烧蚀与热处理后,纯铝板表面微纳米结构致密,其接触角为155.6°,滑动角为4°,超疏水性最佳。Abstract: The micro-nano structure was prepared on the surface of pure aluminum plate by nanosecond laser machining technique, and then was heat-treated at 150 ℃ for 2 h. The effect of laser scanning interval (0.005-0.020 mm), scanning speed (100 -1 700 mm·s-1) and heat treatment on the wettability of the pure aluminum plate surface after laser ablation was studied. The results show that the regular micro-nano grid structure was formed on the surface of pure aluminum plate after laser ablation with different process parameters. The pure aluminum plate surface after laser ablation was super hydrophilic, and after heat treatment changed to be hydrophobic or even super-hydrophobic. With increasing scanning speed and scanning interval, the contact angle of pure aluminum plate surface after laser ablation and heat treatment changed little, and the sliding angle increased; the surface showed different degrees of wettability. After laser ablation with laser scanning speed of 100 mm·s-1 and scanning interval of 0.005 mm and heat treatment, the pure aluminum plate surface had dense micro-nano structure, and the best super-hydrophobicity with contact angle of 155.6° and sliding angle of 4°.
-
Keywords:
- nanosecond laser /
- pure aluminum /
- super-hydrophobicity /
- micro-nano structure /
- contact angle
-
-
[1] TADANAGA K,MORINAGA J,MATSUDA A,et al.Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method[J].Chemistry of Materials, 2000,12(3):590-592.
[2] LIU Z Y,ZHANG X T,MURAKAMI T,et al.Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties[J].Solar Energy Materials and Solar Cells, 2008,92(11):1434-1438.
[3] PENG S,BHUSHAN B.Mechanically durable superoleophobic aluminum surfaces with microstep and nanoreticula hierarchical structure for self-cleaning and anti-smudge properties[J].Journal of Colloid and Interface Science, 2016,461:273-284.
[4] NISHIMOTO S,BHUSHAN B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity[J].RSC Advances, 2013,3(3):671-690.
[5] SHIN S,SEO J,HAN H,et al.Bio-inspired extreme wetting surfaces for biomedical applications[J].Materials,2016,9(2):116.
[6] MOREHEAD J,ZOU M.Superhydrophilic surface on Cu substrate to enhance lubricant retention[J].Journal of Adhesion Science and Technology, 2014,28(8/9):833-842.
[7] CHUN Y,LEVI D S,MOHANCHANDRA K P,et al.Superhydrophilic surface treatment for thin film NiTi vascular applications[J].Materials Science and Engineering:C, 2009,29(8):2436-2441.
[8] ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J].Advanced Materials, 2008,20(21):4049-4054.
[9] ZHAO J N,SHROTRIYA P.Increase the hardness of polycrystalline cubic/wurtzite boron nitride composite through hybrid laser/waterjet heat (LWH) treatment[J].Advances in Applied Ceramics, 2017,116(6):333-340.
[10] RAO A V,LATTHE S S,MAHADIK S A,et al.Mechanically stable and corrosion resistant superhydrophobic sol-gel coatings on copper substrate[J].Applied Surface Science, 2011,257(13):5772-5776.
[11] AHMAD KAMAL S A,RITIKOS R,ABDUL RAHMAN S.Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique[J].Applied Surface Science, 2015,328:146-153.
[12] ZHAO J N,WONG K S,SHROTRIYA P.Hybrid CO2 laser waterjet heat (LWH) treatment of bindered boron nitride composites with hardness improvement[J].Ceramics International, 2017,43(11):8031-8039.
[13] CRICK C R,BEAR J C,KAFIZAS A,et al.Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition[J].Advanced Materials, 2012,24(26):3505-3508.
[14] LIU Y,YIN X M,ZHANG J J,et al.Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate[J].Applied Surface Science, 2013,280:845-849.
[15] ZHAO J N,GUO J,SHROTRIYA P,et al.A rapid one-step nanosecond laser process for fabrication of super-hydrophilic aluminum surface[J].Optics & Laser Technology, 2019,117:134-141.
[16] CHEN Z,HAO L M,CHEN A Q,et al.A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method[J].Electrochimica Acta, 2012,59:168-171.
[17] ZHAO Y,LI M,LU Q H,et al.Superhydrophobic polyimide films with a hierarchical topography:Combined replica molding and layer-by-layer assembly[J].Langmuir, 2008,24(21):12651-12657.
[18] 刘顿,伍义刚,胡勇涛,等.皮秒激光制备铝基超疏水表面[J].激光与光电子学进展,2016,53(10):179-187. [19] CHEN F,ZHANG D S,YANG Q,et al.Bioinspired wetting surface via laser microfabrication[J].ACS Applied Materials & Interfaces, 2013,5(15):6777-6792.
[20] VOROBYEV A Y,GUO C L.Direct femtosecond laser surface nano/microstructuring and its applications[J].Laser & Photonics Reviews, 2013,7(3):385-407.
[21] JAGDHEESH R,PATHIRAJ B,KARATAY E,et al.Laser-induced nanoscale superhydrophobic structures on metal surfaces[J].Langmuir, 2011,27(13):8464-8469.
[22] ZHANG D S,CHEN F,YANG Q,et al.A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J].ACS Applied Materials & Interfaces, 2012,4(9):4905-4912.
[23] XU K C,ZHANG C T,ZHOU R,et al.Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering[J].Optics Express, 2016,24(10):10352.
[24] ZHENG B X,JIANG G D,WANG W J,et al.Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination[J].Radiation Effects and Defects in Solids, 2016,171(5/6):461-473.
[25] CHANG F M,CHENG S L,HONG S J,et al.Super-hydrophilicity to superhydrophobicity transition of CuO nanowire films[J].Applied Physics Letters, 2010,96(11):114101.
[26] TA D V,DUNN A,WASLEY T J,et al.Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications[J].Applied Surface Science,2015,357:248-254.
[27] LONG J Y,ZHONG M L,FAN P X,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications, 2015,27(S2):S29107.
[28] LONG J Y,ZHONG M L,ZHANG H J,et al.Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J].Journal of Colloid and Interface Science, 2015,441:1-9.
[29] 杨奇彪,刘少军,汪于涛,等.纳秒激光诱导铝板表面超疏水微纳结构[J].激光与光电子学进展,2017,54(9):254-259. [30] 弯艳玲, 于化东, 徐丽宁, 等.铝合金表面超疏水微结构的纳秒激光二次扫描制备方法:201710470109.5[P].2017-10-20. [31] 李杰,王超磊,刘玉德,等.激光微织构与自组装对铝合金表面润湿性的影响[J].材料工程,2018,46(1):53-60. [32] 李杰,刘玉德,高东明,等.激光加工结合自组装制备铝合金超疏水表面[J].中国材料进展,2015,34(6):462-466. [33] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry, 1936,28(8):988-994.
[34] KIETZIG A M,HATZIKIRIAKOS S G,ENGLEZOS P.Patterned superhydrophobic metallic surfaces[J].Langmuir, 2009,25(8):4821-4827.
[35] LI Z F,ZHENG Y J,ZHAO J,et al.Wettability of atmospheric plasma sprayed Fe,Ni,Cr and their mixture coatings[J].Journal of Thermal Spray Technology, 2012,21(2):255-262.
[36] AZIMI G,DHIMAN R,KWON H M,et al.Hydrophobicity of rare-earth oxide ceramics[J].Nature Materials, 2013,12(4):315-320.
[37] CHUN D M,NGO C V,LEE K M.Fast fabrication of superhydrophobic metallic surface using nanosecond laser texturing and low-temperature annealing[J].CIRP Annals,2016,65(1):519-522.
[38] SONG Y X,WANG C,DONG X R,et al.Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser[J].Optics & Laser Technology, 2018,102:25-31.
[39] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society, 1944,40:546.
[40] PATANKAR N A.On the modeling of hydrophobic contact angles on rough surfaces[J].Langmuir, 2003,19(4):1249-1253.
[41] FENG X, JIANG L.Design and creation of superwetting/antiwetting surfaces[J].Advanced Materials, 2006,18(23):3063-3078.
[42] CHENG Z J,DU M,LAI H,et al.From petal effect to lotus effect:A facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion[J].Nanoscale, 2013,5(7):2776.
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 1