• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织

周娟, 樊湘芳, 陈勇, 苟毅, 李永峭

周娟, 樊湘芳, 陈勇, 苟毅, 李永峭. 机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织[J]. 机械工程材料, 2020, 44(10): 22-27. DOI: 10.11973/jxgccl202010005
引用本文: 周娟, 樊湘芳, 陈勇, 苟毅, 李永峭. 机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织[J]. 机械工程材料, 2020, 44(10): 22-27. DOI: 10.11973/jxgccl202010005
ZHOU Juan, FAN Xiangfang, CHEN Yong, GOU Yi, LI Yongqiao. Microstructure of CoCrFeNiTiCuMoxVx High Entropy Alloy PowderPrepared by Mechanical Alloying[J]. Materials and Mechanical Engineering, 2020, 44(10): 22-27. DOI: 10.11973/jxgccl202010005
Citation: ZHOU Juan, FAN Xiangfang, CHEN Yong, GOU Yi, LI Yongqiao. Microstructure of CoCrFeNiTiCuMoxVx High Entropy Alloy PowderPrepared by Mechanical Alloying[J]. Materials and Mechanical Engineering, 2020, 44(10): 22-27. DOI: 10.11973/jxgccl202010005

机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织

基金项目: 

湖南省自然科学基金资助项目(2019JJ50524);金属矿山安全与健康国家重点实验室开放基金资助项目(2019-JSKSSYS-009);衡阳市科技局项目(2017KJ293);湖南省大学生研究性学习和创新性实验计划项目

详细信息
    作者简介:

    周娟(1982-),女,湖南湘乡人,讲师,博士

  • 中图分类号: TB31

Microstructure of CoCrFeNiTiCuMoxVx High Entropy Alloy PowderPrepared by Mechanical Alloying

  • 摘要: 采用高能行星式球磨机对CoCrFeNiTiCuMoxVxx=0.5,1.0,1.5,2.0,原子比)粉末进行机械合金化制备高熵合金粉末,利用X射线衍射、扫描电镜、透射电镜研究了钼和钒含量对合金粉末物相组成、晶粒尺寸、晶格应变的影响。结果表明:高能球磨后,纯金属相的衍射峰消失,得到了BCC+FCC双相结构的合金粉末;随着钼和钒含量的增加,BCC相含量增加,FCC相减少;合金粉末颗粒的尺寸在100~200 nm,颗粒呈扁平片状,随着钼和钒含量的增加,合金粉末的晶粒尺寸减小,晶格应变增大。
    Abstract: CoCrFeNiTiCuMoxVx(x=0.5,1.0,1.5,2.0, atomic ratio) powder was mechanically alloyed in a high-energy planetary ball mill to prepare high entropy alloy powder, and influence of molybdenum and vanadium content on the phase composition, grain size and lattice strain of the alloy powder was studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results show that the diffraction peaks of pure metal phases disappeared, and the alloy powder with a dual-phase structure of BCC+FCC was obtained after high-energy ball milling. The content of BCC phase increased, FCC phase decreased with the increase of molybdenum and vanadium content. The alloy powder particle size was between 100-200 nm, and the particles were flat. The grain size of the alloy powder decreased and the lattice strain increased as the content of molybdenum and vanadium increased.
  • [1]

    YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials, 2004,6(5):299-303.

    [2]

    CHUANG M H,TSAI M H,WANG W R,et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Ti<i>y high-entropy alloys[J].Acta Materialia,2011,59(16):6308-6317.

    [3]

    ZOU Y,MA H,SPOLENAK R.Ultrastrong ductile and stable high-entropy alloys at small scales[J].Nature Communications, 2015,6:7748.

    [4]

    WU Y D,CAI Y H,WANG T,et al.A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J].Materials Letters, 2014,130:277-280.

    [5]

    DENG Y,TASAN C C,PRADEEP K G,et al.Design of a twinning-induced plasticity high entropy alloy[J].Acta Materialia, 2015,94:124-133.

    [6]

    LI D Y,LI C X,FENG T,et al.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J].Acta Materialia, 2017,123:285-294.

    [7]

    GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science, 2014,345(6201):1153-1158.

    [8]

    TANG Z,YUAN T,TSAI C W,et al.Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy[J].Acta Materialia, 2015,99:247-258.

    [9]

    HEMPHILL M A,YUAN T,WANG G Y,et al.Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys[J].Acta Materialia, 2012,60(16):5723-5734.

    [10]

    WANG X F,ZHANG Y,QIAO Y,et al.Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys[J].Intermetallics, 2007,15(3):357-362.

    [11]

    WANG F J,ZHANG Y.Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy[J].Materials Science and Engineering:A, 2008,496(1/2):214-216.

    [12]

    ZHOU Y J,ZHANG Y,WANG Y L,et al.Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J].Applied Physics Letters, 2007,90(18):181904.

    [13]

    LIU Y,WANG J S,FANG Q H,et al.Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder[J].Intermetallics, 2016,68:16-22.

    [14]

    SCHUH B,MENDEZ-MARTIN F,VÖLKER B,et al.Mechanical properties,microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J].Acta Materialia, 2015,96:258-268.

    [15] 蒋烨, 陈可, 王伟. 机械合金化法制备AlCoNiFeCr高熵合金涂层[J]. 中国有色金属学报, 2018, 28(9):1784-1790.
    [16] 袁尹明月,彭坤,王海鹏,等.机械合金化方法制备AlxCoCrCu0.5FeNi高熵合金组织结构和性能研究[J].材料导报,2016,30(16):69-73.
    [17]

    FANG S C,CHEN W P,FU Z Q.Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering[J].Materials and Design,2014,54:973-979.

    [18]

    JI W,WANG W M,WANG H,et al.Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering[J].Intermetallics, 2015,56:24-27.

    [19]

    GWALANI B,SONI V,WASEEM O A,et al.Laser additive manufacturing of compositionally graded AlCrFeMoV<i>x (x=0 to 1) high-entropy alloy system[J].Optics and Laser Technology,2019,113:330-337.

    [20]

    CHEN Y L,HU Y H,TSAI C W,et al.Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying[J].Journal of Alloys and Compounds, 2009,477(1/2):696-705.

    [21]

    STEPANOV N D,SHAYSULTANOV D G,SALISHCHEV G A,et al.Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys[J].Journal of Alloys and Compounds, 2015,628:170-185.

    [22]

    TSAI M H,TSAI K Y,TSAI C W,et al.Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys[J].Materials Research Letters,2013,1(4):207-212.

    [23]

    ZHANG Y,ZHOU Y,LIN J,et al.Solid-solution phase formation rules for multi-component alloys[J].Advanced Engineering Materials, 2008,10(6):534-538.

    [24]

    POLETTI M G,FIORE G,SZOST B A,et al.Search for high entropy alloys in the X-NbTaTiZr systems (X=Al,Cr,V,Sn)[J].Journal of Alloys and Compounds, 2015,620:283-288.

    [25]

    YEH J W,CHANG S Y,HONG Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics, 2007,103(1):41-46.

    [26]

    ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science, 2014,61:1-93.

    [27]

    TIAN L H,FU M,XIONG W.Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance[J].Materials, 2018,11(2):320.

    [28]

    ZHANG K B,FU Z Y,ZHANG J Y,et al.Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying[J].Journal of Alloys and Compounds, 2009,485(1/2):31-34.

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-13
  • 修回日期:  2020-07-21
  • 刊出日期:  2020-10-19

目录

    /

    返回文章
    返回