Damage Mechanism of GH4169 Alloy under Creep-Fatigue Interaction
-
摘要: 利用扫描电子显微镜对不同蠕变-疲劳试验条件(应变比分别为-1,0,-∞;总应变范围分别为1.2%,1.6%,2.0%;拉应变保持时间分别为60,120,300,1 800,5 400 s)下GH4169合金试样断口及其纵切薄片上的裂纹、孔洞等损伤特征进行分析,研究了微观损伤特征与试验条件之间的联系;利用电子背散射衍射技术定性描述了孔洞和裂纹的萌生位置与发展过程,定位了蠕变损伤,分析了蠕变-疲劳交互作用下合金的损伤机理。结果表明:总应变范围、拉应变保持时间与试样寿命成反比,与裂纹源数量以及纵切薄片上裂纹、孔洞的数量与尺寸均成正比关系;而应变比对试样寿命无明显影响;试样的蠕变损伤累积随拉应变保持时长的延长呈增长趋势。Abstract: Damage characteristics such as cracks and pores on fracture and longitudinal slice of GH4169 alloy specimens were analyzed by scanning electron microscopy, after being tested under different creep-fatigue conditions (strain ratios of -1, 0, -∞; total strain ranges of 1.2%, 1.6%, 2.0%;tensile strain retention times of 60, 120, 300, 1 800, 5 400 s). The relationship between microscopic damage characteristics and experimental condition was explored. By electron backscatter diffraction technique, the initiation position and development process of the pores and cracks were qualitatively described, the creep damage was located and the damage mechanism of the alloy under the interaction of creep and fatigue was analyzed. The results show that the total strain range and the tensile strain retention time were inversely proportional to the specimen life, and were proportional to the crack source number and the number and size of cracks and pores on the longitudinal slice. The strain ratio had no significant effect on the specimen life. The creep damage accumulation of the specimen increased with the tensile strain retention time.
-
-
[1] 方昌德.航空发动机的发展研究[M].北京:航空工业出版社,2009. [2] DENG G J,TU S T,ZHANG X C,et al.Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J].Engineering Fracture Mechanics,2015,134:433-450.
[3] CHEN X,YANG Z Q,SOKOLOV M A,et al.Effect of creep and oxidation on reduced fatigue life of Ni-based alloy 617 at 850℃[J].Journal of Nuclear Materials,2014,444(1/2/3):393-403.
[4] KASSNER M E.Creep fracture[M]//Fundamentals of Creep in Metals and Alloys.[S.l.]:Elsevier, 2015: 233-260.
[5] 涂善东.高温结构完整性原理[M].北京:科学出版社,2003. [6] 张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社,2006. [7] 陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002. [8] FUCHS H O, STEPHENS R I. Metal fatigue in engineering[M]. New York: John Wiley&Sons, Inc, 1980.
[9] RODRIGUEZ P, RAO K B S. Nucleation and growth of cracks and cavities under creep-fatigue interaction[J]. Progress in Materials Science, 1993, 37(5): 403-480.
[10] DASGUPTA A,OYAN C,BARKER D,et al.Solder creep-fatigue analysis by an energy-partitioning approach[J].Journal of Electronic Packaging, 1992,114(2):152-160.
[11] SURESH S.材料的疲劳[M].王中光,译.北京:国防工业出版社,1999. [12] ZHANG X C,TU S T,XUAN F Z.Creep-fatigue endurance of 304 stainless steels[J].Theoretical and Applied Fracture Mechanics,2014,71:51-66.
[13] SAXENA A.Fracture mechanics approaches for characterizing creep-fatigue crack growth[J].JSME International Journal Ser A,Mechanics and Material Engineering, 1993,36(1):1-20.
[14] BHANU SANKARA RAO K,MEURER H P,SCHUSTER H.Creep-fatigue interaction of inconel 617 at 950℃ in simulated nuclear reactor helium[J].Materials Science and Engineering:A, 1988,104:37-51.
[15] UMEZAKI S,MURATA Y,NOMURA K,et al.Quantitative analysis of dislocation density in an austenitic steel after plastic deformation[J].Journal of the Japan Institute of Metals and Materials, 2014,78(6):218-224.
[16] WRIGHT S I,NOWELL M M,FIELD D P.A review of strain analysis using electron backscatter diffraction[J].Microscopy and Microanalysis, 2011,17(3):316-329.
[17] KAMAYA M.Assessment of local deformation using EBSD:Quantification of local damage at grain boundaries[J].Materials Characterization,2012,66:56-67.
[18] ENGLER O, RANDLE A V. Introduction to texture analysis[M].2nd ed.Boca Raton:CRC Press, 2009.
[19] KOUL A K,AU P,BELLINGER N,et al.Development of a damage tolerant microstructure for inconel 718 turbine disk material[C]//Superalloys 1988, 1988:3-12.
[20] DU J H,LV X,DENG Q.Effect of heat treatment on microstructure and mechanical properties of GH4169 superalloy[J].Rare Metal Materials and Engineering,2014,43(8):1830-1834.
[21] FORSYTH P J E. Slip-band damage and extrusion[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1957, 242(1229): 198-202.
[22] SURESH S. Fatigue of materials[M].2nd ed. Cambridge:Cambridge University Press,1998.
[23] FOURNIER B,SAUZAY M,CAËS C,et al.Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel.Part Ⅲ:Lifetime prediction[J].International Journal of Fatigue,2008,30(10/11):1797-1812.
[24] CHAUSSUMIER M,SHAHZAD M,MABRU C,et al.A fatigue multi-site cracks model using coalescence,short and long crack growth laws,for anodized aluminum alloys[J].Procedia Engineering,2010,2(1):995-1004.
计量
- 文章访问数: 7
- HTML全文浏览量: 0
- PDF下载量: 4