Research Status on Powder Recycling of Metal Powder BedFusion Additive Manufacturing
-
摘要: 粉末床熔融增材制造技术可快速成形复杂结构零件,尺寸精度高,在诸多领域得到广泛关注,但相比于传统制造方法,其成本较高;金属粉末的循环使用则可以有效降低制造成本。结合增材制造金属粉末的研究进展,对常用的316L不锈钢、Ti6Al4V合金和IN718合金粉末在循环使用过程中的化学性能、物理性能和成形件性能变化进行了概述,并基于民用航空零部件增材制造需求,分析了金属粉末循环使用时存在的若干问题,提出了解决思路。Abstract: Powder bed fusion additive manufacturing technique can quickly form complex structural parts with high dimensional accuracy, and has received extensive attention in many fields. However, compared with traditional manufacturing methods, its cost is higher. The recycling of metal powder can effectively reduce manufacturing costs. Combined with the research progress on additive manufacturing metal powders, changes of the chemical properties, physical properties and parts properties of commonly used 316L stainless steel, Ti6Al4V alloy and IN718 alloy powders in the recycling process are summarized. On the basis of demand for additive manufacturing of civil aviation parts, several problems existing in metal powders recycling are analyzed, and solutions are proposed.
-
Keywords:
- powder bed additive manufacturing /
- recycling /
- metal powder
-
-
[1] 巩水利,锁红波,李怀学.金属增材制造技术在航空领域的发展与应用[J].航空制造技术,2013,56(13):66-71. [2] 刘业胜,韩品连,胡寿丰,等.金属材料激光增材制造技术及在航空发动机上的应用[J].航空制造技术,2014,57(10):62-67. [3] SARTIN B, POND T, GRIFFITH B, et al. 316L powder reuse for metal additive manufacturing[C]//Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium. Austin TX: University of Texas, 2017: 351-364.
[4] PINTO F C,SOUZA FILHO I R,SANDIM M J R,et al.Defects in parts manufactured by selective laser melting caused by δ-ferrite in reused 316L steel powder feedstock[J].Additive Manufacturing,2020,31:100979.
[5] JELIS E,CLEMENTE M,KERWIEN S,et al.Metallurgical and mechanical evaluation of 4340 steel produced by direct metal laser sintering[J].JOM,2015,67(3):582-589.
[6] 魏菁,李雅莉,何艳丽,等.Hastelloy-X粉末成分对激光选区熔化成形各向成形性能的影响[J].中国激光,2018,45(12):1202011. [7] 杜金辉, 赵光普, 邓群, 等. 中国变形高温合金研制进展[J]. 航空材料学报, 2016, 36(3):27-39. [8] 范立坤.增材制造用金属粉末材料的关键影响因素分析[J].理化检验(物理分册),2015,51(7):480-482. [9] UHLMANN E,KERSTING R,KLEIN T B,et al.Additive manufacturing of titanium alloy for aircraft components[J].Procedia CIRP,2015,35:55-60.
[10] PRASHANTH K G. Selective laser melting of Al-12Si[D]. Dresden: Technische Universität Dresden, 2014.
[11] KEMPEN K,THIJS L,YASA E,et al.Process optimization and microstructural analysis for selective laser melting of AlSi10Mg[J].Physics Procedia,2011,22: 484-495.
[12] European Powder Metallurgy Association, Introduction to additive manufacturing technology: A guide for designers and engineers[EB/OL].(2015-10-13). https://www.epma.com/epma-news/introduction-to-additive-manufacturing-technology-brochure-launched.
[13] SPIERINGS A B,VOEGTLIN M,BAUER T,et al.Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing[J].Progress in Additive Manufacturing,2016,1(1/2):9-20.
[14] LUTTER-GVNTHER M, SCHWER F, SEIDEL C, et al. Effects on properties of metal powders for laser beam melting along the powder process chain[C]//Fraunhofer Direct Digital Manufacturing Conference. Berlin, Germany: Fraunhofer Additive Manufacturing Alliance,2016.
[15] HEBERT R J.Viewpoint:Metallurgical aspects of powder bed metal additive manufacturing[J].Journal of Materials Science,2016,51(3):1165-1175.
[16] WEINGARTEN C,BUCHBINDER D,PIRCH N,et al.Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J].Journal of Materials Processing Technology,2015,221:112-120.
[17] 张义文.高温合金粉末内部孔洞的研究概况[J].钢铁研究学报,2002,14(3):73-77. [18] GORJI N E,O'CONNOR R,BRABAZON D.XPS,XRD,and SEM characterization of the virgin and recycled metallic powders for 3D printing applications[J].IOP Conference Series:Materials Science and Engineering,2019,591:012016.
[19] HEIDEN M J,DEIBLER L A,RODELAS J M,et al.Evolution of 316L stainless steel feedstock due to laser powder bed fusion process[J].Additive Manufacturing,2019,25:84-103.
[20] GORJI N E,O'CONNOR R,MUSSATTO A,et al.Recyclability of stainless steel (316L) powder within the additive manufacturing process[J].Materialia,2019,8:100489.
[21] SUTTON A T,KRIEWALL C S,KARNATI S,et al.Characterization of AISI 304L stainless steel powder recycled in the laser powder-bed fusion process[J].Additive Manufacturing,2020,32:100981.
[22] LUTTER-GVNTHER M,GEBBE C,KAMPS T,et al.Powder recycling in laser beam melting:Strategies,consumption modeling and influence on resource efficiency[J].Production Engineering,2018,12(3/4):377-389.
[23] CORDOVA L,CAMPOS M,TINGA T.Revealing the effects of powder reuse for selective laser melting by powder characterization[J].JOM,2019,71(3):1062-1072.
[24] GHODS S,SCHULTZ E,WISDOM C,et al.Electron beam additive manufacturing of Ti6Al4V:Evolution of powder morphology and part microstructure with powder reuse[J].Materialia,2020,9:100631.
[25] WEI C B,MA X L,YANG X J,et al.Microstructural and property evolution of Ti6Al4V powders with the number of usage in additive manufacturing by electron beam melting[J].Materials Letters,2018,221:111-114.
[26] TANG H P,QIAN M,LIU N,et al.Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting[J].JOM,2015,67(3):555-563.
[27] SCHUR R. Effects of powder reuse on the mechanical properties of electron beam additively manufactured Ti-6Al-4V[D].Seattle: University of Washington,2019.
[28] NANDWANA P,PETER W H,DEHOFF R R,et al.Recyclability study on inconel 718 and Ti-6Al-4V powders for use in electron beam melting[J].Metallurgical and Materials Transactions B,2016,47(1):754-762.
[29] O'LEARY R, SETCHI R, PRICKETT P, et al. An investigation into the recycling of Ti-6Al-4V powder used within SLM to improve sustainability[J]. The Journal of Innovation Impact, 2016, 8(2): 377-388.
[30] QUINTANA O A,ALVAREZ J,MCMILLAN R,et al.Effects of reusing Ti-6Al-4V powder in a selective laser melting additive system operated in an industrial setting[J].JOM,2018,70(9):1863-1869.
[31] CARRION P E,SOLTANI-TEHRANI A,PHAN N,et al.Powder recycling effects on the tensile and fatigue behavior of additively manufactured Ti-6Al-4V parts[J].JOM,2019,71(3):963-973.
[32] ARDILA L C,GARCIANDIA F,GONZÁLEZ-DÍAZ J B,et al.Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting[J].Physics Procedia,2014,56:99-107.
[33] HANN B A.Powder reuse and its effects on laser based powder fusion additive manufactured alloy 718[J].SAE International Journal of Aerospace,2016,9(2):209-213.
[34] STRONDL A,LYCKFELDT O,BRODIN H,et al. Characterization and control of powder properties for additive manufacturing[J]. JOM, 2015,67, 549-554.
[35] RENDEROS M,TORREGARAY A,GUTIERREZ-ORRANTIA M E,et al.Microstructure characterization of recycled IN718 powder and resulting laser clad material[J].Materials Characterization,2017,134:103-113.
[36] RENDEROS M,GIROT F,LAMIKIZ A,et al.Ni based powder reconditioning and reuse for LMD process[J].Physics Procedia,2016,83:769-777.
[37] VELASCO-CASTRO M,HERNÁNDEZ-NAVA E,FIGUEROA I A,et al.The effect of oxygen pickup during selective laser melting on the microstructure and mechanical properties of Ti-6Al-4V lattices[J].Heliyon,2019,5(12):e02813.
[38] SEYDA V,KAUFMANN N,EMMELMANN C.Investigation of aging processes of Ti-6Al-4V powder material in laser melting[J].Physics Procedia,2012,39:425-431.
[39] PRESCOTT J K,BARNUM R A.On powder flowability[J].Pharmaceutical Technology,2000,24(10):60-84.
[40] KIANIA N,BABAK L. 3D printing and additive manufacturing:State of the industry annual worldwide progress report[M]. Fort Collins:Wohlers Associates, Inc. 2016.
[41] MANI M,LANE B,DONMEZ A,et al.Measurement science needs for real-time control of additive manufacturing powder bed fusion processes[R].Gaithersburg: U.S.National Institute of Standards and Technology,2015.
[42] CHANDRASEKAR S, COBLE J B, YODER S, et al. Investigating the effect of metal powder recycling in electron beam powder bed fusion using process log data[J]. Additive Manufacturing, 2020, 32: 100994.
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 4