• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

固溶和时效处理对选区激光熔化成形GTD222镍基合金组织和硬度的影响

潘纬韬, 祝国梁, 王瑞, 汪东红, 董安平, 疏达, 孙宝德

潘纬韬, 祝国梁, 王瑞, 汪东红, 董安平, 疏达, 孙宝德. 固溶和时效处理对选区激光熔化成形GTD222镍基合金组织和硬度的影响[J]. 机械工程材料, 2020, 44(11): 66-71. DOI: 10.11973/jxgccl202011012
引用本文: 潘纬韬, 祝国梁, 王瑞, 汪东红, 董安平, 疏达, 孙宝德. 固溶和时效处理对选区激光熔化成形GTD222镍基合金组织和硬度的影响[J]. 机械工程材料, 2020, 44(11): 66-71. DOI: 10.11973/jxgccl202011012
PAN Weitao, ZHU Guoliang, WANG Rui, WANG Donghong, DONG Anping, SHU Da, SUN Baode. Effect of Solid Solution and Aging Treatment on Microstructure and Hardness of Selective Laser Melting GTD222 Nickel-Based Alloy[J]. Materials and Mechanical Engineering, 2020, 44(11): 66-71. DOI: 10.11973/jxgccl202011012
Citation: PAN Weitao, ZHU Guoliang, WANG Rui, WANG Donghong, DONG Anping, SHU Da, SUN Baode. Effect of Solid Solution and Aging Treatment on Microstructure and Hardness of Selective Laser Melting GTD222 Nickel-Based Alloy[J]. Materials and Mechanical Engineering, 2020, 44(11): 66-71. DOI: 10.11973/jxgccl202011012

固溶和时效处理对选区激光熔化成形GTD222镍基合金组织和硬度的影响

基金项目: 

国家自然科学基金资助项目(51871147,51704195,51821001)

详细信息
    作者简介:

    潘纬韬(1995-),男,浙江丽水人,硕士研究生

  • 中图分类号: TN249

Effect of Solid Solution and Aging Treatment on Microstructure and Hardness of Selective Laser Melting GTD222 Nickel-Based Alloy

  • 摘要: 采用选区激光熔化成形技术制备GTD222镍基合金并进行了1 150 ℃固溶和时效处理,研究了固溶处理时间(0,20,40,60,120 min)、时效温度(760,780,800,820,840 ℃)和时效时间(2,4,8 h)对显微组织和硬度的影响。结果表明:选区激光熔化成形GTD222合金中的柱状晶与成形方向呈一定倾斜角度,合金中存在胞状亚结构和高密度位错,未析出γ'相,MC碳化物主要分布于晶界及相邻亚结构界面处;经1 150 ℃固溶处理后合金中的亚结构均消失,随着固溶时间的延长,碳化物逐渐溶解,合金显微硬度先下降后趋于稳定;在760~840 ℃时效处理2~8 h后,合金基体中析出大量γ'相,γ'相的尺寸随时效时间延长和时效温度升高而增大,合金硬度则随时效时间延长和时效温度降低而增大。
    Abstract: The GTD222 nickel-based alloy was prepared by selective laser melting technique and then treated by solution at 1 150 ℃ and aging. The effects of solution treatment time (0,20,40,60,120 min), aging temperature (760,780,800,820,840 ℃) and aging time (2,4,8 h) on the microstructure and hardness of the alloy were studied. The results show that the columnar crystals in the GTD222 alloy formed by selective laser melting had a certain oblique angle to the forming direction. There were cellular substructures and high-density dislocations in the alloy, no γ' phase was precipitated, and MC carbides mainly distributed at grain boundaries and interfaces of adjacent substructures. The substructures of the alloy disappeared after solution treatment at 1 150 ℃. With increasing solution time, the carbides gradually dissolved, and the alloy hardness decreased first and then became stable. After aging at 760-840 ℃ for 2-8 h, a large number of γ' phases were precipitated in the alloy matrix. The size of γ' phase increased with aging time and temperature, while the hardness of alloy increased with increasing aging time and decreasing aging temperature.
  • [1] 李建中.压气机导叶用GTD222合金铸造技术研究[J].模具制造,2019,19(4):89-92.
    [2] 汪超,沈红卫,梅林波.高温材料在发电燃气轮机中的应用和发展[J].热力透平,2014,43(2):94-100.
    [3]

    SEAVER D,BELTRAN A.Nickel base alloy GTD-222,a new gas turbine nozzle alloy[C]//ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition.Orlando,Florida,USA:ASME,1991.

    [4]

    DAVID S A,DEBROY T.Current issues and problems in welding science[J].Science,1992,257(5069):497-502.

    [5]

    DEBROY T,DAVID S A.Physical processes in fusion welding[J].Reviews of Modern Physics,1995,67(1):85-112.

    [6]

    WEI H L,ELMER J W,DEBROY T.Origin of grain orientation during solidification of an aluminum alloy[J].Acta Materialia,2016,115:123-131.

    [7]

    WEI H L,ELMER J W,DEBROY T.Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy[J].Acta Materialia,2017,126:413-425.

    [8]

    DENG D Y,PENG R L,BRODIN H,et al.Microstructure and mechanical properties of Inconel 718 produced by selective laser melting:Sample orientation dependence and effects of post heat treatments[J].Materials Science and Engineering:A,2018,713:294-306.

    [9]

    GORSSE S,HUTCHINSON C,GOUNÉ M,et al.Additive manufacturing of metals:A brief review of the characteristic microstructures and properties of steels,Ti-6Al-4V and high-entropy alloys[J].Science and Technology of Advanced Materials,2017,18(1):584-610.

    [10]

    GUAN S,WAN D,SOLBERG K,et al.Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping[J].Materials Science and Engineering:A,2019,761:138056.

    [11]

    LIU L F,DING Q Q,ZHONG Y,et al.Dislocation network in additive manufactured steel breaks strength-ductility trade-off[J].Materials Today,2018,21(4):354-361.

    [12]

    CHEN Y,LU F G,ZHANG K,et al.Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling[J].Journal of Alloys and Compounds,2016,670:312-321.

    [13]

    HELMER H,BAUEREIß A,SINGER R F,et al.Grain structure evolution in Inconel 718 during selective electron beam melting[J].Materials Science and Engineering:A,2016,668:180-187.

    [14]

    JIA Q B,GU D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts:Densification,microstructure and properties[J].Journal of Alloys and Compounds,2014,585:713-721.

    [15]

    LI C,WHITE R,FANG X Y,et al.Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J].Materials Science and Engineering:A,2017,705:20-31.

    [16]

    MA M M,WANG Z M,ZENG X Y.Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy[J].Materials Characterization,2015,106:420-427.

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-08-19
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回