• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

激光选区熔化成形GH4169合金的超高周疲劳性能

宋宗贤, 王东坡, 吴志生, 孙科, 毋晗, 刘鑫铭

宋宗贤, 王东坡, 吴志生, 孙科, 毋晗, 刘鑫铭. 激光选区熔化成形GH4169合金的超高周疲劳性能[J]. 机械工程材料, 2020, 44(11): 72-77. DOI: 10.11973/jxgccl202011013
引用本文: 宋宗贤, 王东坡, 吴志生, 孙科, 毋晗, 刘鑫铭. 激光选区熔化成形GH4169合金的超高周疲劳性能[J]. 机械工程材料, 2020, 44(11): 72-77. DOI: 10.11973/jxgccl202011013
SONG Zongxian, WANG Dongpo, WU Zhisheng, SUN Ke, WU Han, LIU Xinming. Ultrahigh Cycle Fatigue Performance of GH4169 Alloy by Selective Laser Melting[J]. Materials and Mechanical Engineering, 2020, 44(11): 72-77. DOI: 10.11973/jxgccl202011013
Citation: SONG Zongxian, WANG Dongpo, WU Zhisheng, SUN Ke, WU Han, LIU Xinming. Ultrahigh Cycle Fatigue Performance of GH4169 Alloy by Selective Laser Melting[J]. Materials and Mechanical Engineering, 2020, 44(11): 72-77. DOI: 10.11973/jxgccl202011013

激光选区熔化成形GH4169合金的超高周疲劳性能

基金项目: 

天津市科技计划项目技术创新引导专项优秀科技特派员项目(19JCTPJC43800);天津市科技计划项目(19YFFCYS00090);天津中德应用技术大学科技培育重点项目(zdkt2017-006)

详细信息
    作者简介:

    宋宗贤(1985-),男,河北沧州人,讲师,博士研究生

  • 中图分类号: TG146

Ultrahigh Cycle Fatigue Performance of GH4169 Alloy by Selective Laser Melting

  • 摘要: 对经标准热处理的激光选区熔化(SLM)成形GH4169合金进行了拉伸试验和105~109周次高周/超高周疲劳试验,研究了其拉伸性能、疲劳性能和断口形貌,并分析了疲劳断裂机理。结果表明:热处理态SLM成形GH4169合金的抗拉强度和屈服强度较锻件的有所提高,但伸长率大幅下降,弹性模量略有下降;合金S-N曲线呈现阶梯状,在4×105周次和5×107周次附近出现拐点;在105~107周次高周疲劳区间试样的裂纹均萌生于表面,而在超过107周次超高周疲劳区间试样的裂纹大多萌生于内部,其裂纹源为激光能量密度过高产生的圆形匙孔,孔内残留的碳化物会加速裂纹萌生,降低疲劳寿命。
    Abstract: Tensile test and high/ultrahigh cycle fatigue tests with 105-109 cycles were carried out on selective laser melting (SLM) formed GH4169 alloy; the alloy was heat treated standardly. The tensile properties, fatigue properties and fracture morphology were studied, and the fatigue fracture mechanism was analyzed. The results show that after heat treatment, the tensile strength and yield strength of SLM formed GH4169 alloy were higher than those of forgings, but the elongation was greatly reduced, and the elastic modulus was slightly reduced. The S-N curve of SLM formed GH4169 alloy presented a stepped shape, showing inflection points near the 4×105 cycles and 5×107 cycles. The cracks of specimens in the high-cycle fatigue interval of 105-107 cycles all originated on the surface, while those in the ultrahigh cycle fatigue life interval exceeding 107 cycles were mostly generated inside. The internal crack source was the circular keyhole produced by the high laser energy density, and the residual carbide in the hole accelerated the crack initiation and reduced the fatigue life.
  • [1] 吴明阳,王博,程耀楠,等.高温合金材料特性及加工技术进展[J].哈尔滨理工大学学报,2015, 20(6): 24-31.
    [2]

    FURRER D,FECHT H.Ni-based superalloys for turbine discs[J].JOM,1999,51(1):14-17.

    [3]

    TROSCH T,STRÖßNER J,VÖLKL R,et al.Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J].Materials Letters,2016,164:428-431.

    [4]

    NI M,CHEN C,WANG X J,et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J].Materials Science and Engineering:A,2017,701:344-351.

    [5] 王迪,钱泽宇,窦文豪,等.激光选区熔化成形高温镍基合金研究进展[J].航空制造技术,2018,61(10):49-60.
    [6]

    ABE F,OSAKADA K,SHIOMI M,et al.The manufacturing of hard tools from metallic powders by selective laser melting[J].Journal of Materials Processing Technology,2001,111(1/2/3):210-213.

    [7] 戴冬华,顾冬冬,李雅莉,等.选区激光熔化W-Cu复合体系熔池熔体运动行为的数值模拟[J].中国激光,2013,40(11):1103001.
    [8] 宋文清,李晓光,曲伸,等.金属增材制造技术在航空发动机中的应用展望[J].金属加工(热加工),2016(2):44-46.
    [9]

    PEREVOSHCHIKOVA N,RIGAUD J,SHA Y,et al.Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehler's design[J].Rapid Prototyping Journal,2017,23(5):881-892.

    [10]

    RICKENBACHER L,ETTER T,HÖVEL S,et al.High temperature material properties of IN738LC processed by selective laser melting (SLM) technology[J].Rapid Prototyping Journal,2013,19(4):282-290.

    [11]

    POPOVICH V A,BORISOV E V,POPOVICH A A,et al.Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting[J].Materials & Design,2017,131:12-22.

    [12] 孙兵兵,房立家,张学军.激光选区熔化镍基高温合金GH4169的成形工艺与显微组织研究[J].热加工工艺,2019,48(12):93-98.
    [13] 李红宇,刘杨,邢建,等.核电用GH4169合金棒材315℃低周疲劳性能研究[J].铸造技术,2020,41(1):6-8.
    [14] 侯杰,董建新,姚志浩.GH4169合金高温疲劳裂纹扩展的微观损伤机制[J].工程科学学报,2018,40(7):822-832.
    [15] 王磊,刘颜铭,陈刚,等.GH4169镍基高温合金的高温低周疲劳损伤机理[J].机械工程材料,2019,43(1):45-49.
    [16]

    PEI C H,SHI D,YUAN H,et al.Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718[J].Materials Science and Engineering:A,2019,759:278-287.

    [17] 洪友士,赵爱国,钱桂安.合金材料超高周疲劳行为的基本特征和影响因素[J].金属学报,2009,45(7):769-780.
    [18]

    UMEZAWA O,NAGAI K.Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature[J].Metallurgical and Materials Transactions A,1998,29(3):809-822.

    [19]

    CHAI G C.The formation of subsurface non-defect fatigue crack origins[J].International Journal of Fatigue,2006,28(11):1533-1539.

    [20] 卿光辉.飞机结构疲劳与断裂[M].北京:中国民航出版社,2015.
    [21] 栗子林,路超,程格,等.选区激光熔化GH4169成型件微观组织及力学性能研究[J].应用激光,2019,39(1):48-53.
    [22]

    WEIDNER A,AMBERGER D,PYCZAK F,et al.Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold[J].International Journal of Fatigue,2010,32(6):872-878.

    [23] 姚亮亮,张显程,刘峰,等.GH4169镍基高温合金的高温低周疲劳性能[J].机械工程材料,2016,40(4):25-29.
    [24] 孙雄凯.GH4169合金选区激光熔化熔池形态及气孔缺陷研究[D].哈尔滨:哈尔滨工业大学,2018.
    [25] 杨璟.铝合金激光深熔焊接过程行为与缺陷控制研究[D].北京:北京工业大学,2011.
    [26]

    WATRING D S,CARTER K C,CROUSE D,et al.Mechanisms driving high-cycle fatigue life of as-built Inconel 718 processed by laser powder bed fusion[J].Materials Science and Engineering:A,2019,761:137993.

    [27]

    LIU W,CHEN C Y,SHUAI S S,et al.Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography[J].Materials Science and Engineering:A,2020,797:139981.

    [28]

    CHLEBUS E,GRUBER K,KU AZ'G NICKA B,et al.Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J].Materials Science and Engineering:A,2015,639:647-655.

    [29] 王作伟.激光喷丸强化IN718镍基合金高温疲劳性能的数值模拟及试验研究[D].镇江:江苏大学,2018.
    [30] 何卫锋,李应红,周章文,等.激光冲击工艺对GH742镍基高温合金疲劳性能的影响[J].材料热处理学报,2009,30(3):42-45.
    [31]

    AMANOV A,PYUN Y S,KIM J H,et al.Ultrasonic fatigue performance of high temperature structural material Inconel 718 alloys at high temperature after UNSM treatment[J].Fatigue & Fracture of Engineering Materials & Structures,2015,38(11):1266-1273.

计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 修回日期:  2020-09-27
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回