Microstructure and Properties of Cu-Ag Alloy after Annealing at Different Temperatures
-
摘要: 采用连铸法结合冷拉拔与中间软化处理制备Cu-4Ag和Cu-20Ag合金,研究了合金在不同温度(440,480,520℃)退火后的显微组织、硬度和导电率。结果表明:退火后,富银相在Cu-4Ag和Cu-20Ag合金横截面上分别呈细小的颗粒状和连续的网状结构,在合金纵截面上均呈纤维状。与Cu-4Ag合金相比,Cu-20Ag合金的富银相较多,硬度较高,导电率较低;随退火温度升高,2种合金的硬度降低,导电率增大,480℃退火后二者的导电率和硬度均最接近;在480℃退火时Cu-20Ag合金的导电率和硬度达到最优匹配。Abstract: The Cu-4Ag and Cu-20Ag alloys were prepared by continuous casting combining with cold drawing and intermediate softening treatment. The microstructure, hardness and conductivity of the alloys annealed at different temperatures (440,480,520 ℃) were studied. The results show that after annealing, the rich-silver phase had fine-particle-like shapes fine and continuous network structures on the cross section of the Cu-4Ag and Cu-20Ag alloys, respectively. On the longitudinal section of the alloys, the rich-silver phase was fibrous. The Cu-20Ag alloy had more rich-silver phase, higher hardness and lower conductivity compared with Cu-4Ag alloy. The hardness of the two alloys decreased and the conductivity increased with increasing annealing temperature. The conductivity and hardness of the two alloys were the closest after annealing at 480 ℃. The conductivity and hardness of the Cu-20Ag alloy got the best match when annealed at 480 ℃.
-
Keywords:
- Cu-Ag alloy /
- annealing /
- hardness /
- conductivity
-
-
[1] 孟兴梅. 浅析铜线键合铝垫裂纹的预防和改善[J].中国集成电路, 2019, 28(5):66-72. [2] 李贵茂,王恩刚,张林,等.形变原位Cu-Ag复合材料的研究进展[J].材料导报,2010,24(5):80-84. [3] SHI L F,TAN X L,XIN D J,et al.Optimization design of fixed-length bond-wire interconnection in multichips module[J].IEEE Transactions on Components,Packaging,and Manufacturing Technology,2019,9(11):2290-2297.
[4] BAO G H,XU Y Q,HUANG L Y,et al.Strengthening effect of Ag precipitates in Cu-Ag alloys:A quantitative approach[J].Materials Research Letters, 2016,4(1):37-42.
[5] ASAOKA K,TSUJI K,KUWAYAMA N.Correlation between microstructure of Ag-Pd-Au-Cu alloy and changes in shape on aging[J].Journal of Biomedical Materials Research, 1984,18(6):707-716.
[6] 李周,肖柱,姜雁斌,等. 高强导电铜合金的成分设计、相变与制备[J]. 中国有色金属学报, 2019, 29(9):2009-2049. [7] 郭保江,周延军,张彦敏,等. 连铸速度对Cu-3.5Ag合金组织性能的影响[J].特种铸造及有色合金,2019,39(7):808-812. [8] 郭保江,周延军,张彦敏,等. 时效时间对Cu-3.5Ag合金性能及其纳米析出相特征的影响[J]. 材料热处理学报, 2020, 41(6):55-61. [9] 王英民,毛大立. 形变纤维增强高强度高电导率的Cu-Ag合金[J]. 稀有金属材料与工程, 2001, 30(4):295-298. [10] 封存利,秦芳莉,介明山,等. 拉拔工艺对定向凝固Cu-Ag合金导线性能的影响[J]. 特种铸造及有色合金, 2015,35(8):112-115. [11] 刘嘉斌,张雷,孟亮. Ag含量对纤维相强化Cu-Ag合金组织及性能的影响[J]. 金属学报, 2006(9):937-941. [12] 虞觉奇.实用钎料合金相图手册[M].北京:机械工业出版社,2015. [13] 朱利媛,李雷,冀国良,等. Cu-4.0Ag合金微细线制备工艺及性能研究[J]. 特种铸造及有色合金,2017,37(12):1357-1360. [14] 黄珂,郭磊,杨伏良,等. 挤压比对热挤压成型铝铁铜合金组织与拉伸性能的影响[J].机械工程材料,2015,39(4):53-58. [15] 宁远涛,张晓辉,张婕. 大变形Cu-Ag合金原位纤维复合材料的稳定性[J]. 中国有色金属学报, 2005,15(4):18-24. [16] 李赫亮,袁晓光,吴明富,等. 变形及热处理对含锆的铝镁硅铜合金显微组织的影响[J]. 机械工程材料, 2014, 38(10):28-31. [17] ZHANG B B, TAO N R, LU K. A high strength and high electric conductivity bulk Cu-Ag alloy strengthened with nanotwins[J]. Scripta Materialia, 2017, 129:39-43.
[18] 刘喜波,董企铭,刘亚,等.时效对接触线用Cu-Ag-Cr合金性能的影响[J].上海金属,2004,26(6):10-14.
计量
- 文章访问数: 26
- HTML全文浏览量: 2
- PDF下载量: 7