高级检索

    钴掺杂锰氧化物水系锌离子电池正极材料的制备与电化学性能

    Preparation and Electrochemical Performance of Cobalt-DopedManganese Oxide Aqueous Zinc-ion Battery Cathode Material

    • 摘要: 以硝酸锰和硝酸钴为原料,通过溶剂热反应、水解和煅烧制备了可作为水系锌离子电池正极材料的钴掺杂锰氧化物,研究了钴掺杂锰氧化物的微观结构及电化学性能。结果表明:所制备的钴掺杂锰氧化物h-CoMn3.2Ox具有分级核壳结构,多孔壳表面存在径向尺寸大于100 nm的花瓣状纳米片,壳和纳米片均由平均粒径为5 nm的一次粒子构成,钴掺杂赋予锰氧化物较小的尺寸和精细的结构;h-CoMn3.2Ox具有方锰矿型一氧化锰的晶体结构;与锰氧化物相比,h-CoMn3.2Ox具有较大的比表面积与比容量,并具有良好的循环稳定性;h-CoMn3.2Ox的储能行为归因于H+/Zn2+的连续共嵌入反应。

       

      Abstract: The cobalt-doped manganese oxide for aqueous zinc-ion battery cathode material was prepared by solvothermal, hydrolyzing and annealing with cobalt nitrate and manganese nitrate as raw materials. The microstructure and electrochemical performance of cobalt-doped manganese oxide was investigated. The results show that the prepared cobalt-doped manganese oxide h-CoMn3.2Ox had a hierarchical yolk-shell structure, and the porous shell surface was decorated with petal-like nanosheets with radial dimension of more than 100 nm. Both of the shell and nanosheets were composed of primary nanoparticles with average size of 5 nm. Cobalt-doping endowed manganese oxides with small size and delicate structure. h-CoMn3.2Ox had the manganosite MnO crystal structure. Compared with monometallic manganese oxide, h-CoMn3.2Ox exhibited relatively large specific surface areas and specific capacities, and had good cyclic stability. The energy-storage behavior of h-CoMn3.2Ox was attributed to sequent co-insertion of H+ and Zn2+.

       

    /

    返回文章
    返回