高级检索
    李艳明, 孟令琪, 佟文伟, 刘欢. GH738高温合金涡轮机匣开裂原因[J]. 机械工程材料, 2021, 45(7): 94-99,110. DOI: 10.11973/jxgccl202107017
    引用本文: 李艳明, 孟令琪, 佟文伟, 刘欢. GH738高温合金涡轮机匣开裂原因[J]. 机械工程材料, 2021, 45(7): 94-99,110. DOI: 10.11973/jxgccl202107017
    LI Yanming, MENG Lingqi, TONG Wenwei, LIU Huan. Cracking Cause of GH738 Superalloy Turbine Casing[J]. Materials and Mechanical Engineering, 2021, 45(7): 94-99,110. DOI: 10.11973/jxgccl202107017
    Citation: LI Yanming, MENG Lingqi, TONG Wenwei, LIU Huan. Cracking Cause of GH738 Superalloy Turbine Casing[J]. Materials and Mechanical Engineering, 2021, 45(7): 94-99,110. DOI: 10.11973/jxgccl202107017

    GH738高温合金涡轮机匣开裂原因

    Cracking Cause of GH738 Superalloy Turbine Casing

    • 摘要: 采用形貌观察、成分分析、组织观察、性能测试、热模拟试验等方法对某型航空发动机GH738高温合金涡轮机匣开裂的原因进行了分析,探讨了裂纹的性质及产生机理。结果表明:失效机匣中裂纹的性质为疲劳裂纹,裂纹源位于机匣前安装边挂钩外表面。机匣前安装边挂钩处的局部区域温度达到850~900℃,超过了GH738合金的允许使用温度(810℃),导致组织中γ'相体积分数降低,合金的力学性能和抗疲劳性能降低,从而促使了机匣过早疲劳开裂。

       

      Abstract: The cause of cracking of GH738 super alloy turbine casing in an aeroengine was analyzed by morphology observation, component analysis, microstructure observation, performance testing and thermal simulation experiments, and the crack type and generating mechanism were discussed. The results show that the crack type in the failed casing was fatigue crack, and the crack source was located on the outer surface of the casing fixture fringe. The local temperature of the casing fixture fringe was 850-900 ℃, and exceeded the allowable service temperature (810 ℃) of GH738 alloy, which led to decrease of volume fraction of γ' phase in microstructure, and the mechanical properties and fatigue resistance of the alloy decreased, thereby promoted the premature fatigue cracking of the casing.

       

    /

    返回文章
    返回