高级检索
    周黎明, 吴明霞, 廖富强, 熊计, 李延博, 张智银. 石墨/Ti (C,N)基金属陶瓷梯度自润滑复合材料残余应力的有限元模拟[J]. 机械工程材料, 2021, 45(8): 91-97. DOI: 10.11973/jxgccl202108017
    引用本文: 周黎明, 吴明霞, 廖富强, 熊计, 李延博, 张智银. 石墨/Ti (C,N)基金属陶瓷梯度自润滑复合材料残余应力的有限元模拟[J]. 机械工程材料, 2021, 45(8): 91-97. DOI: 10.11973/jxgccl202108017
    ZHOU Liming, WU Mingxia, LIAO Fuqiang, XIONG Ji, LI Yanbo, ZHANG Zhiyin. Finite Element Simulation on Residual Stress of Graphite/Ti(C,N)-Based Cermet Gradient Self-lubricating Composite[J]. Materials and Mechanical Engineering, 2021, 45(8): 91-97. DOI: 10.11973/jxgccl202108017
    Citation: ZHOU Liming, WU Mingxia, LIAO Fuqiang, XIONG Ji, LI Yanbo, ZHANG Zhiyin. Finite Element Simulation on Residual Stress of Graphite/Ti(C,N)-Based Cermet Gradient Self-lubricating Composite[J]. Materials and Mechanical Engineering, 2021, 45(8): 91-97. DOI: 10.11973/jxgccl202108017

    石墨/Ti (C,N)基金属陶瓷梯度自润滑复合材料残余应力的有限元模拟

    Finite Element Simulation on Residual Stress of Graphite/Ti(C,N)-Based Cermet Gradient Self-lubricating Composite

    • 摘要: 利用有限元方法研究了组成分布指数和梯度自润滑层厚度(层厚)对石墨/Ti(C,N)基金属陶瓷梯度自润滑复合材料残余应力的影响;采用层铺-烧结法制备该梯度自润滑复合材料,利用X射线衍射法测试其表面残余应力,并与模拟结果进行了对比。结果表明:径向压应力主要分布在梯度自润滑层的表层,在金属陶瓷基体与梯度自润滑层界面边缘处存在严重的应力集中;随着组成分布指数的增大,表面径向压应力增大,界面处应力减小;增大层厚可以改善界面处的应力分布,但表面径向压应力也随之降低;最佳组成分布指数为1.0~2.0,层厚为1.0~1.5 mm;试验测得的表面残余压应力随层厚的变化与模拟结果基本一致。

       

      Abstract: Effects of the compositional exponent and the gradient self-lubricating layer thickness (layer thickness) on the residual stress of the graphite /Ti(C,N)-based cermet gradient self-lubricating composite were studied by finite element method. The gradient self-lubricating composite was prepared by layer-sintering method. The surface residual stress was measured by X-ray diffraction and compared with the simulation. The results show that the radial compressive stress mainly distributed in surface of the gradient self-lubricating layer, and there was serious stress concentration at the interface edge between the cermet matrix and the gradient self-lubricating layer. With increasing compositional exponent, the surface radial compressive stress increased, and the stress at the interface decreased. Increasing the layer thickness could improve the stress distribution at the interface, but the surface radial compressive stress decreased. The optimal compositional exponent was 1.0-2.0, and the layer thickness was 1.0-1.5 mm. The change of the residual compressive stress with the layer thickness by testing was consistent with the simulation.

       

    /

    返回文章
    返回