• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

Q690ZM中锰钢的焊接冷裂纹敏感性

齐祥羽, 严玲, 张鹏, 王晓航, 杜林秀

齐祥羽, 严玲, 张鹏, 王晓航, 杜林秀. Q690ZM中锰钢的焊接冷裂纹敏感性[J]. 机械工程材料, 2021, 45(12): 7-12,18. DOI: 10.11973/jxgccl202112002
引用本文: 齐祥羽, 严玲, 张鹏, 王晓航, 杜林秀. Q690ZM中锰钢的焊接冷裂纹敏感性[J]. 机械工程材料, 2021, 45(12): 7-12,18. DOI: 10.11973/jxgccl202112002
QI Xiangyu, YAN Ling, ZHANG Peng, WANG Xiaohang, DU Linxiu. Welding Cold Crack Sensitivity of Q690ZM Medium-Mn Steel[J]. Materials and Mechanical Engineering, 2021, 45(12): 7-12,18. DOI: 10.11973/jxgccl202112002
Citation: QI Xiangyu, YAN Ling, ZHANG Peng, WANG Xiaohang, DU Linxiu. Welding Cold Crack Sensitivity of Q690ZM Medium-Mn Steel[J]. Materials and Mechanical Engineering, 2021, 45(12): 7-12,18. DOI: 10.11973/jxgccl202112002

Q690ZM中锰钢的焊接冷裂纹敏感性

基金项目: 

国家高技术研究发展计划重大项目(2015AA03A501)

详细信息
    作者简介:

    齐祥羽(1988-),男,吉林白山人,工程师,博士

  • 中图分类号: TG406

Welding Cold Crack Sensitivity of Q690ZM Medium-Mn Steel

  • 摘要: 采用Ar-CO2气体保护焊通过最高硬度试验和斜Y型坡口焊接冷裂纹试验,研究了Q690ZM中锰钢的焊接冷裂纹敏感性。结果表明:当焊接热输入由10 kJ·cm-1增加至20 kJ·cm-1或预热温度由20 ℃升高至200 ℃时,中锰钢焊接热影响区的显微硬度均略微降低,最高硬度均高于430 HV,焊接冷裂倾向严重;当焊接热输入为15 kJ·cm-1,预热温度由100 ℃升高至200 ℃时,斜Y型坡口焊接裂纹试验中试验焊缝的表面裂纹和根部裂纹逐渐消失,断面裂纹率降低至9.09%。为防止冷裂纹的产生,中锰钢焊前必须进行150~200 ℃的预热,并进行相应的焊后热处理;粗晶热影响区中粗大的马氏体板条晶体学取向差小,大角度晶界密度低,抵抗解理裂纹扩展的能力弱,因此焊接冷裂纹萌生后沿紧邻熔合线的粗晶热影响区扩展。
    Abstract: The sensitivity of welding cold crack of medium-Mn steel was investigated by a maximum hardness test and Y-groove welding cracking test through Ar-CO2 gas shielded welding.The results show that when the welding heat input increased from 10 kJ·cm-1 to 20 kJ·cm-1 or the preheating temperature increased from 20 ℃ to 200 ℃, the microhardness of the welding heat affected zone of medium-Mn steel decreased slightly, and the maximum hardness was higher than 430 HV, indicating the steel had a severe welding cold cracking tendency.The surface crack and root crack of test weld in Y-groove welding cracking test disappeared and the section crack rate decreased to 9.09%, when the welding heat input was 15 kJ·cm-1 and the preheating temperature increased from 100 ℃ to 200 ℃.In order to prevent welding cold crack formation, the preheating at 150-200 ℃ before welding medium-Mn steel and post-weld heat treatment should be carried out.The large martensitic lath in coarse-grained heat affected zone had little difference in crystallographic orientation and had a low density of large angle grain boundaries, which had weak resistance to cleavage crack propagation; thus, the welding cold crack extended along the coarse-grained heat affected zone adjacent the fusion line after initiation.
  • [1]

    HAN J,NAM J H,LEE Y K.The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel[J].Acta Materialia,2016,113:1-10.

    [2]

    HU J,DU L X,LIU H,et al.Structure-mechanical property relationship in a low-C medium-Mn ultrahigh strength heavy plate steel with austenite-martensite submicro-laminate structure[J].Materials Science and Engineering:A,2015,647:144-151.

    [3]

    QI X Y,DU L X,HU J,et al.High-cycle fatigue behavior of low-C medium-Mn high strength steel with austenite-martensite submicron-sized lath-like structure[J].Materials Science and Engineering:A,2018,718:477-482.

    [4]

    DU Y,GAO X H,LAN L Y,et al.Hydrogen embrittlement behavior of high strength low carbon medium manganese steel under different heat treatments[J].International Journal of Hydrogen Energy,2019,44(60):32292-32306.

    [5]

    LAN L Y,QIU C L,ZHAO D W,et al.Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel[J].Materials Science and Engineering:A,2011,529:192-200.

    [6]

    YURIOKA N,SUZUKI H.Hydrogen assisted cracking in C-Mn and low alloy steel weldments[J].International Materials Reviews,1990,35(1):217-249.

    [7] 兰亮云.焊接热循环下Q690CF钢的贝氏体相变特征与断裂微观机制[D].沈阳:东北大学,2013.

    LAN L Y.Bainite transformation characteristics and fracture micromechanism of Q690CF steels under the welding thermal cycle[D].Shenyang:Northeastern University,2013.

    [8]

    LEE H W.Weld metal hydrogen-assisted cracking in thick steel plate weldments[J].Materials Science and Engineering:A,2007,445/446:328-335.

    [9]

    SUZUKI H.Weldability of modern structural steels in Japan[J].Transactions of the Iron and Steel Institute of Japan,1983,23(3):189-204.

    [10]

    LAHDO R,SEFFER O,SPRINGER A,et al.GMA-laser hybrid welding of high-strength fine-grain structural steel with an inductive preheating[J].Physics Procedia,2014,56:637-645.

    [11] 齐祥羽.高强中锰钢焊接热循环下的组织性能与断裂行为[D].沈阳:东北大学,2019. QI X Y.Microstructure and properties of high strength medium manganese steel under welding thermal cycle and its fracture behavior [D].Shenyang:Northeastern University, 2019.
    [12] 齐祥羽,朱晓雷,胡军,等.低碳中锰Q690F高强韧中厚板生产技术[J].东北大学学报(自然科学版),2019,40(4):483-487.

    QI X Y,ZHU X L,HU J,et al.Production technology of low-C medium-Mn Q690F high strength and toughness mid-thick steel plate[J].Journal of Northeastern University (Natural Science),2019,40(4):483-487.

    [13]

    QI X Y,DU L X,HU J,et al.Enhanced impact toughness of heat affected zone in gas shield arc weld joint of low-C medium-Mn high strength steel by post-weld heat treatment[J].Steel Research International,2018,89(4):1700422.

    [14]

    GOURGUES A F.Electron backscatter diffraction and cracking[J].Materials Science and Technology,2002,18(2):119-133.

    [15]

    QIAO Y,ARGON A S.Cleavage cracking resistance of high angle grain boundaries in Fe-3%Si alloy[J].Mechanics of Materials,2003,35(3/4/5/6):313-331.

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 修回日期:  2021-11-25
  • 刊出日期:  2021-12-19

目录

    /

    返回文章
    返回