• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

电子束选区熔化成形TC4合金的显微组织及硬度

童邵辉, 李东, 梁孟强, 丁婷, 冷星环

童邵辉, 李东, 梁孟强, 丁婷, 冷星环. 电子束选区熔化成形TC4合金的显微组织及硬度[J]. 机械工程材料, 2022, 46(2): 43-47. DOI: 10.11973/jxgccl202202007
引用本文: 童邵辉, 李东, 梁孟强, 丁婷, 冷星环. 电子束选区熔化成形TC4合金的显微组织及硬度[J]. 机械工程材料, 2022, 46(2): 43-47. DOI: 10.11973/jxgccl202202007
TONG Shaohui, LI Dong, LIANG Mengqiang, DING Ting, LENG Xinghuan. Microstructure and Hardness of Electron Beam Selective Melting Formed TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2022, 46(2): 43-47. DOI: 10.11973/jxgccl202202007
Citation: TONG Shaohui, LI Dong, LIANG Mengqiang, DING Ting, LENG Xinghuan. Microstructure and Hardness of Electron Beam Selective Melting Formed TC4 Titanium Alloy[J]. Materials and Mechanical Engineering, 2022, 46(2): 43-47. DOI: 10.11973/jxgccl202202007

电子束选区熔化成形TC4合金的显微组织及硬度

基金项目: 

国家自然科学基金资助项目(51605276)

详细信息
    作者简介:

    童邵辉(1992-),男,上海人,实验师,硕士

  • 中图分类号: TG146.2

Microstructure and Hardness of Electron Beam Selective Melting Formed TC4 Titanium Alloy

  • 摘要: 采用电子束选区熔化成形技术制备不同尺寸(ϕ8 mm×25 mm,ϕ25 mm×8 mm)TC4合金试样,研究了2种试样在粉末堆积方向的显微组织及硬度变化。结果表明:尺寸ϕ8 mm×25 mm试样的显微组织主要由原始β柱状晶界处的针状α集束组织和晶内针状α相互相交错形成的网篮状魏氏组织组成,原始β柱状晶主轴平行于堆积方向并且贯穿各熔合层,残余β相弥散分布在α相基体中;尺寸ϕ25 mm×8 mm试样顶部组织由针状α'相组成,中部组织中α'相受热分解为α相和β相,α相宽度较大,底部组织中条状α相贯穿原始β晶粒形成集束,残余β相在α相基体中呈连续网状分布。具有较大长宽比针状α相或α'相部位的显微硬度比具有较小长宽比条状和片状α相或α'相的硬度高。
    Abstract: The TC4 alloy samples with different dimension(ϕ8 mm×25 mm, ϕ25 mm×8 mm) were fabricated by electron beam selective melting forming technique. The evolution of microstructure and hardness along the powder deposition direction was studied. The results show that the microstructure of the sample with dimension of ϕ8 mm×25 mm was composed of acicular α clusters at prior β columnar grain boundaries and net-basket-shaped widmanstatten structures formed by interlaced acicular α phase in grains. The axis of prior β columnar grains was parallel to the direction of powder deposition and grew through every deposition layer. The residual β phase dispersed among α phase matrix. The top microstructure of the sample with dimension of ϕ25 mm×8 mm consisted of acicular α' phases. The acicular α' phase in the middle microstructure was decomposed into α phase and β phase, and the width of α phase was relatively large. The strip α phase in the bottom microstucture grew through prior β grains to form clusters. The residual β phase dispersed in the continuous network among α phase matrix. The microhardness of the part with acicular α or α' phase of large length-width ratios was higher than that with strip and lamellar α or α' phase of small length-width ratios.
  • [1]

    ARRAZOLA P J,GARAY A,IRIARTE L M,et al.Machinability of titanium alloys (Ti6Al4V and Ti555.3)[J].Journal of Materials Processing Technology,2009,209:2223-2230.

    [2]

    NELATURI S,SHAPIRO V.Representation and analysis of additively manufactured parts[J].Computer-Aided Design,2015,67:13-23.

    [3]

    BAUMERS M,DICKENS P,TUCK C,et al.The cost of additive manufacturing:Machine productivity,economies of scale and technology push [J].Technological Forecasting and Social Change,2016,102:193-201.

    [4]

    MURR L E,GAYTAN S M,RAMIREZ D A,et al.Metal fabrication by additive manufacturing using laser and electron beam melting technologies [J].Journal of Materials Science & Technology,2012,28(1):1-14.

    [5]

    FRAZIER W E.Metal additive manufacturing:A review[J].Journal of Materials Engineering and Performance,2014,23(6):1917-1928.

    [6]

    GAO W,ZHANG Y B,RAMANUJAN D,et al.The status,challenges,and future of additive manufacturing in engineering[J].Computer-Aided Design,2015,69:65-89.

    [7]

    SCHWERDTFEGER J,KÖRNER C.Selective electron beam melting of Ti-48Al-2Nb-2Cr:Microstructure and aluminium loss[J].Intermetallics,2014,49:29-35.

    [8]

    BAUEREIß A,SCHAROWSKY T,KÖRNER C K.Defect generation and propagation mechanism during additive manufacturing by selective beam melting[J].Journal of Materials Processing Technology,2014,214(11):2522-2528.

    [9]

    WANG X Q,GONG X B,CHOU K.Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing[J].Procedia Manufacturing,2015,1:287-295.

    [10] 徐蔚,常辉,李东旭,等.熔覆面积对电子束选区熔化 Ti-6Al-4V合金组织及硬度的影响[J].热加工工艺,2015,44(13):53-56.

    XU W,CHANG H,LI D X,et al.Influence of cladding areas on microstructure and hardness of Ti-6Al-4V alloy by electron beam selective melting[J].Hot Working Technology,2015,44(13) :53-56.

    [11]

    CAIN V,THIJS L,VAN HUMBEECK J,et al.Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J].Additive Manufacturing,2015,5:68-76.

    [12] 杨光,王文东,钦兰云,等.α+β区退火对激光沉积TA15钛合金组织及硬度的影响[J].金属热处理,2017,42(12):39-43.

    YANG G,WANG W D,QIN L Y,et al.Effect of α + β phase zone annealing on microstructure and microhardness of laser deposition manufactured TA15 titanium alloy[J].Heat Treatment of Metals,2017,42(12):39-43.

    [13] 张胜雷,陈卓,曲寿江,等.热处理对电子束选区熔化制备的Ti-6Al-4V合金组织与力学性能的影响[J].热加工工艺,2018,47(10):226-231.

    ZHANG S L,CHEN Z,QU S J,et al.Influence of heat treatment on microstructure and mechanical properties of Ti-6Al-4V alloy fabricated via electron beam selective melting[J].Hot Working Technology,2018,47(10):226-231.

    [14] 党薇,薛祥义,李金山,等.TC21合金片层组织特征对其断裂韧性的影响[J].中国有色金属学报,2010,20(增刊1):16-20.

    DANG W,XUE X Y,LI J S,et al.Influence of lamellar microstructure feature on fracture toughness of TC21 alloy[J].The Chinese Journal of Nonferrous Metals.2010,20(S1):16-20.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2021-05-31
  • 刊出日期:  2022-02-19

目录

    /

    返回文章
    返回