• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

纳秒激光制备超疏水TC4钛合金表面的抗结霜性能

于庆华, 于世胜, 王帅, 申云磊, 陈列, 刘顿

于庆华, 于世胜, 王帅, 申云磊, 陈列, 刘顿. 纳秒激光制备超疏水TC4钛合金表面的抗结霜性能[J]. 机械工程材料, 2022, 46(6): 84-90,97. DOI: 10.11973/jxgccl202206014
引用本文: 于庆华, 于世胜, 王帅, 申云磊, 陈列, 刘顿. 纳秒激光制备超疏水TC4钛合金表面的抗结霜性能[J]. 机械工程材料, 2022, 46(6): 84-90,97. DOI: 10.11973/jxgccl202206014
YU Qinghua, YU Shisheng, WANG Shuai, SHEN Yunlei, CHEN Lie, LIU Dun. Frost Resistance of Superhydrophobic TC4 Titanium Alloy Surface byNanosecond Laser[J]. Materials and Mechanical Engineering, 2022, 46(6): 84-90,97. DOI: 10.11973/jxgccl202206014
Citation: YU Qinghua, YU Shisheng, WANG Shuai, SHEN Yunlei, CHEN Lie, LIU Dun. Frost Resistance of Superhydrophobic TC4 Titanium Alloy Surface byNanosecond Laser[J]. Materials and Mechanical Engineering, 2022, 46(6): 84-90,97. DOI: 10.11973/jxgccl202206014

纳秒激光制备超疏水TC4钛合金表面的抗结霜性能

详细信息
    作者简介:

    于庆华(1965-),男,辽宁东沟人,副教授,学士通信作者:刘顿教授

  • 中图分类号: TN249

Frost Resistance of Superhydrophobic TC4 Titanium Alloy Surface byNanosecond Laser

  • 摘要: 采用纳秒激光对TC4钛合金表面进行刻蚀,然后放入电热干燥箱内烘烤,研究了钛合金表面的浸润特性、微观结构及抗结霜性能。结果表明:在100 W激光功率下纳秒激光刻蚀和烘烤处理后钛合金表面接触角超过160°,而滚动角小于5°,具有非常好的超疏水性能,钛合金表面呈纳米级的凹坑、凸起和规则球状结构;激光刻蚀钛合金表面经烘烤后同时满足了粗糙微观结构与低表面能的条件,表面的浸润特性从超亲水状态转变为超疏水状态;在-15℃下激光刻蚀和烘烤后的超疏水钛合金表面9 μL水滴完全结冰所需时间为360 s,比未激光刻蚀钛合金延长了2倍以上,且水滴完全结冰后仍能保持大于130°的接触角;在-15℃恒湿条件下持续冷冻10 min后超疏水钛合金表面只出现了零散的小颗粒霜晶,而未激光刻蚀钛合金表面密集分布着大量小颗粒霜晶。
    Abstract: The surface of TC4 titanium alloy was etched by nanosecond laser, and then baked in an electrothermal drying oven. The wetting characteristics, microstructure and frost resistance of titanium alloy surface were studied. The results show that after nanosecond laser etching at 100 W laser power and baking, the contact angle of titanium alloy surface exceeded 160°, and the rolling angle was less than 5°, indicating the surface had superhydrophobic properties. The surface of titanium alloy presented nano pits, bulges and regular spherical structures. After baking, the surface of laser etched titanium alloy met the conditions of rough microstructure and low surface energy, and the wetting characteristics of the surface changed from superhydrophilic state to superhydrophobic state. The time required for complete freezing of 9 μL water droplet on superhydrophobic titanium alloy surface at -15℃ was 360 s, which was more than 2 times longer than that of titanium alloy without laser etching, and the contact angle of water droplets could still be maintained greater than 130° after complete freezing. After being frozen for 10 min at -15℃ with constant humidity, only scattered small frost crystals appeared on the superhydrophobic titanium alloy surface, while a large number of small frost crystals were densely distributed on the surface of titanium alloy without laser etching.
  • [1] 孙丽敏,李亚宏,齐东昱,等.钛合金航空结构件导孔数字化加工方法[J].工具技术,2021,55(8):92-94.

    SUN L M,LI Y H,QI D Y,et al.Digital machining method of guide hole of titanium alloy aviation structural part[J].Tool Engineering,2021,55(8):92-94.

    [2] 王瑞,冯军,李辉,等.飞机用TC4钛合金连接箱体复合制造技术研究[J].铸造技术,2021,42(8):656-661.

    WANG R,FENG J,LI H,et al.Research on hybrid manufacturing technology of TC4 titanium alloy connecting box for aircraft[J].Foundry Technology,2021,42(8):656-661.

    [3] 黄强.航空钛合金加工方法及表面完整性控制技术[J].金属加工(冷加工),2021(7):1-5.

    HUANG Q.Processing method and surface integrity control technology of aviation titanium alloy[J].Metal Working (Metal Cutting),2021(7):1-5.

    [4] 何忝锜,米磊,郭凯,等.航空钛合金锻造技术的研究进展[J].世界有色金属,2021(9):113-114.

    HE T Q,MI L,GUO K,et al.Research progress of aviation titanium alloy forging technology[J].World Nonferrous Metals,2021(9):113-114.

    [5] 李荣.机翼钛合金蒙皮成型的问题及措施研究[J].粘接,2019,40(11):125-128.

    LI R.Research on problems and measures of wing titanium alloy skin forming[J].Adhesion,2019,40(11):125-128.

    [6] 李小飞,洪时泉,周进,等.飞机防冰表面材料研究进展[J].航空科学技术,2019,30(7):1-7.

    LI X F,HONG S Q,ZHOU J,et al.Review of anti-icing surface materials[J].Aeronautical Science&Technology,2019,30(7):1-7.

    [7] 周煜杰.飞机防除冰方法的总结与探究[J].现代商贸工业,2019,40(1):195-196.

    ZHOU Y J.Summary and exploration of aircraft anti icing and de icing methods[J].Modern Business Trade Industry,2019,40(1):195-196.

    [8] 王真,蒋红娜.飞机防冰系统及其技术发展现状[J].中国科技信息,2017(13):56-58.

    WANG Z,JIANG H N.Development status of aircraft anti icing system and its technology[J].China Science and Technology Information,2017(13):56-58.

    [9]

    CHEN L, PING H, YANG T, et al. Icing performance of superhydrophobic silicone rubber surfaces by laser texturing[J]. Materials Research Express, 2019,6(12):1250e2.

    [10]

    BILGIN S, ISIK M, YILGOR E, et al. Hydrophilization of silicone-urea copolymer surfaces by UV/ozone:Influence of PDMS molecular weight on surface oxidation and hydrophobic recovery[J]. Polymer, 2013,54(25):6665-6675.

    [11]

    FARHADI S, FARZANEH M, KULINICH S A. Anti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science, 2011, 257(14):6264-6269.

    [12] 赵倩,王晓兰,符家华.5052铝合金表面超疏水复合涂层的制备及其耐蚀性[J].材料科学与工程学报,2020,38(5):778-784.

    ZHAO Q,WANG X L,FU J H.Preparation and corrosion resistance of superhydrophobic coatings on 5052 aluminium alloy[J].Journal of Materials Science and Engineering,2020,38(5):778-784.

    [13] 夏晓健,蔡建宾,林德源,等.铝合金表面超疏水涂层的制备及其在盐雾环境中耐蚀行为的研究[J].湖南师范大学自然科学学报,2020,43(5):57-64.

    XIA X J,CAI J B,LIN D Y,et al.Fabrication of superhydrophobic coating on aluminum alloy and anti-corrosion behavior in salt-spray environment[J].Journal of Natural Science of Hunan Normal University,2020,43(5):57-64.

    [14] 赵丽,台秀梅,杜志平.超疏水超亲油不锈钢网的制备工艺优化及其性能研究[J].化学研究与应用,2021,33(1):187-193.

    ZHAO L,TAI X M,DU Z P.Optimization of preparation process and performance of super hydrophobic and super lipophilic stainless steel mesh[J].Chemical Research and Application,2021,33(1):187-193.

    [15] 石惠,林御寒,贾天卿,等.基于空间光调制器的飞秒激光时空干涉在不锈钢表面高效率制备超疏水功能的仿生结构[J].光子学报,2021,50(6):99-107.

    SHI H,LIN Y H,JIA T Q,et al.Efficient processing of super-hydrophobic biomimetic structures on stainless steel surfaces by spatiotemporal interference of two femtosecond laser beams based on spatial light modulator[J].Acta Photonica Sinica,2021,50(6):99-107.

    [16] 郭楠,李晶,伍旭东,等.激光刻蚀法制备超疏水自清洁铝合金表面[J].长春理工大学学报(自然科学版),2021,44(3):70-75.

    GUO N,LI J,WU X D,et al.Fabricate of super-hydrophobic self-cleaning aluminum alloy surface via laser processing[J].Journal of Changchun University of Science and Technology (Natural Science Edition),2021,44(3):70-75.

    [17]

    BARISH J A, GODDARD J M. Anti-fouling surface modified stainless steel for foodprocessing[J], Food Bioprod Process,2013,91(4):352-361.

    [18]

    MA W, HIGAKI Y, OTSUKA H, et al. Perfluoropolyether-infused nano-texture:A versatile approach to omniphobic coatings with low hysteresis and high transparency[J]. Chemical Communications,2013, 49(6):597-599.

    [19] 羊思洁,罗松,杨新,等.TC4钛合金超疏水涂层的制备及性能[J].电镀与涂饰,2021,40(22):1686-1693.

    YANG S J, LUO S, YANG X, et al. Preparation and properties of superhydrophobic coating on TC4 titanium alloy[J]. Electroplating&Finishing,2021,40(22):1686-1693.

    [20] 连峰,任洪梅,管善堃,等.超疏水钛合金表面的制备及其摩擦学性能[J].中国有色金属学报,2015,25(9):2421-2427.

    LIAN F, REN H M, GUAN S K, et al. Preparation of super hydrophobic titanium alloy surface and its tribological performance[J]. The Chinese Journal of Nonferrous Metals,2015,25(9):2421-2427.

    [21] 刘顿,伍义刚,胡勇涛,等.皮秒激光制备铝基超疏水表面[J].激光与光电子学进展,2016,53(10):179-187.

    LIU D, WU Y G, HU Y T, et al. Fabrication of super-hydrophobic aluminum surface by picosecond laser[J]. Laser&Optoelectronics Progress,2016,53(10):179-187.

    [22] 杨奇彪,刘少军,汪于涛,等.纳秒激光诱导铝板表面超疏水微纳结构[J].激光与光电子学进展,2017,54(9):254-259.

    YANG Q B,LIU S J,WANG Y T,et al.Super-hydrophobic micro-nano structures on aluminum surface induced by nanosecond laser[J].Laser&Optoelectronics Progress,2017,54(9):254-259.

    [23]

    CHEN L, WEN G Q, YANG T, et al. Fractal characteristics of disordered microstructure on the laser-textured silicone rubber surface in wettability transition[J]. Journal of Physics D:Applied Physics, 2021, 54(43):435302.

    [24]

    LONG J Y, ZHONG M L, ZHANG H J, et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 2015, 441:1-9.

    [25] 刘鑫,张旋,闵敬春.壁面静止水滴冻结过程形状变化[J].工程热物理学报,2020,41(3):704-708.

    LIU X,ZHANG X,MIN J C.Shape variation of sessile water droplet during freezing[J].Journal of Engineering Thermophysics,2020,41(3):704-708.

    [26] 王皆腾,刘中良,勾昱君,等.冷铜表面上水滴冻结时的变形[J].中国科学E辑:技术科学,2006,36(11):1344-1354.

    WANG J T, LIU Z L, GOU Y J,et al.Deformation of water droplets on the surface of cold copper during freezing[J].Science in China (Series E:Information Sciences),2006,36(11):1344-1354.

计量
  • 文章访问数:  17
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-05-12
  • 刊出日期:  2022-06-19

目录

    /

    返回文章
    返回