高级检索
    罗雪芳, 姚助, 刘定富. 热处理温度对电镀Ni-Sn-Cu合金镀层组织及性能的影响[J]. 机械工程材料, 2022, 46(6): 91-97. DOI: 10.11973/jxgccl202206015
    引用本文: 罗雪芳, 姚助, 刘定富. 热处理温度对电镀Ni-Sn-Cu合金镀层组织及性能的影响[J]. 机械工程材料, 2022, 46(6): 91-97. DOI: 10.11973/jxgccl202206015
    LUO Xuefang, YAO Zhu, LIU Dingfu. Effect of Heat Treatment Temperature on Microstructure and Properties of Electrodeposited Ni-Sn-Cu Alloy Coating[J]. Materials and Mechanical Engineering, 2022, 46(6): 91-97. DOI: 10.11973/jxgccl202206015
    Citation: LUO Xuefang, YAO Zhu, LIU Dingfu. Effect of Heat Treatment Temperature on Microstructure and Properties of Electrodeposited Ni-Sn-Cu Alloy Coating[J]. Materials and Mechanical Engineering, 2022, 46(6): 91-97. DOI: 10.11973/jxgccl202206015

    热处理温度对电镀Ni-Sn-Cu合金镀层组织及性能的影响

    Effect of Heat Treatment Temperature on Microstructure and Properties of Electrodeposited Ni-Sn-Cu Alloy Coating

    • 摘要: 采用电镀工艺在镀锌铁片上制备Ni-Sn-Cu合金镀层,然后在氮气保护下对镀层进行300~500℃保温1 h的热处理,研究不同温度热处理后镀层的微观形貌、物相组成、与基体的结合状态、硬度、耐腐蚀性能等。结果表明:随着热处理温度的升高,镀层从非晶态结构逐渐转变为晶态结构,并析出Ni、Cu3Sn和Ni3Sn2相;随着热处理温度由300℃升高到400℃,镀层与基体间的结合良好,当温度高于400℃后镀层与基体的结合变差;随着热处理温度的升高,镀层的显微硬度先升高后下降,自腐蚀电流密度先减小后增大,自腐蚀电位先升后降,交流阻抗容抗弧半径先增大后减小,电荷转移电阻先增大后减小;400℃热处理后镀层的综合性能最优,表面质量最佳,与基体的结合良好,显微硬度最高,为328.7 HV,自腐蚀电流密度最小,为10.9 μA·cm-2,自腐蚀电位最高,为-0.689 V,交流阻抗容抗弧半径最大,电荷转移电阻最大,为1.031 kΩ·cm2

       

      Abstract: The Ni-Sn-Cu alloy coating was prepared on galvanized iron sheet by electroplating process, and then the coating was heat treated at 300-500℃ for 1 h under nitrogen protection. The microstructure, phase composition, bonding state with matrix, hardness and corrosion resistance of the coating after heat treatment at different temperatures were studied. The results show that with increasing heat treatment temperature, the coating structure gradually changed from amorphous structure to crystalline structure, and Ni, Cu3Sn and Ni3Sn2 phases precipitated. The bonding between the coating and the matrix was good with increasing heat treatment temperature from 300℃ to 400℃ and was poor above 450℃. With increasing heat treatment temperature, the microhardness of the coating increased first and then decreased, the free corrosion current density decreased first and then increased, the free corrosion potential increased first and then decreased, the capacitance arc radius of alternating current impedance increased first and then decreased, and the charge transfer resistance increased first and then decreased. When the heat treatment temperature was 400℃, coating had the best overall performance with the best surface quality, the good bonding with the matrix, the highest microhardness of 328.7 HV, the lowest free corrosion current density of 10.9 μA·cm-2, the highest free corrosion potential of -0.689 V, the largest alternating current impedance capacitance arc radius and the largest charge transfer resistance of 1.031 kΩ·cm2.

       

    /

    返回文章
    返回