• CSCD中国科学引文数据库来源期刊
  • 中文核心期刊
  • 中国机械工程学会材料分会会刊
  • 中国科技核心期刊
高级检索

不同组成硅化石墨复合材料的摩擦磨损性能

王梓璇, 薛蓉, 朱聪珍, 蔺浩然, 王继平

王梓璇, 薛蓉, 朱聪珍, 蔺浩然, 王继平. 不同组成硅化石墨复合材料的摩擦磨损性能[J]. 机械工程材料, 2022, 46(10): 21-26. DOI: 10.11973/jxgccl202210004
引用本文: 王梓璇, 薛蓉, 朱聪珍, 蔺浩然, 王继平. 不同组成硅化石墨复合材料的摩擦磨损性能[J]. 机械工程材料, 2022, 46(10): 21-26. DOI: 10.11973/jxgccl202210004
WANG Zixuan, XUE Rong, ZHU Congzhen, LIN Haoran, WANG Jiping. Friction and Wear Properties of Different Constituent SiliconizedGraphite Composites[J]. Materials and Mechanical Engineering, 2022, 46(10): 21-26. DOI: 10.11973/jxgccl202210004
Citation: WANG Zixuan, XUE Rong, ZHU Congzhen, LIN Haoran, WANG Jiping. Friction and Wear Properties of Different Constituent SiliconizedGraphite Composites[J]. Materials and Mechanical Engineering, 2022, 46(10): 21-26. DOI: 10.11973/jxgccl202210004

不同组成硅化石墨复合材料的摩擦磨损性能

详细信息
    作者简介:

    王梓璇(1997-),女,吉林四平人,硕士研究生

  • 中图分类号: TB321

Friction and Wear Properties of Different Constituent SiliconizedGraphite Composites

  • 摘要: 以在不同等静压压力(40 MPa和70 MPa)下采用反应熔渗制备的2种组成硅化石墨复合材料和市购俄罗斯产硅化石墨复合材料为研究对象,研究3种组成硅化石墨复合材料的物相组成和微观结构,以及水润滑条件下摩擦磨损性能。结果表明:硅化石墨复合材料的物相均由碳相、碳化硅相和硅相组成,三相呈三维网络嵌入式分布;当碳相含量较低,碳化硅含量较高时,硅化石墨复合材料的摩擦因数随着载荷的增加而增大,而当碳相含量较高,碳化硅含量较低时,摩擦因数先增大后减小。不同组成硅化石墨复合材料的磨损量均极低,耐磨性能良好,磨损机理主要为磨粒磨损。
    Abstract: Taking two kinds of constituent siliconized graphite composites prepared by reactive molten infiltration with different isostatic pressures (40 MPa and 70 MPa) and commercially purchased Russian-made siliconized graphite composites as research objects, the phase composition, microstructure and friction and wear properties under water lubrication conditions of three kinds of constituent siliconized graphite composites were studied. The results show that the phases of the siliconized graphite composites were composed of carbon phase, silicon carbide phase and silicon phase, which were distributed as a three-dimensional network embedded. When the carbon phase content was relatively low and the silicon graphite content was relatively high, friction coefficient of siliconized graphite composites increased with the load; when the carbon phase content was relatively high and silicon carbide content was relatively low, the friction coefficient increased first and then decreased with the load. The wear loss of different constituent siliconized graphite composites was extremely low, and the siliconized graphite composites had excellent wear resistance. The wear mechanism was mainly abrasive wear.
  • [1] 苏波.水火核:铸国之重器, 谋深度转型[J].新能源科技, 2021(2):28-30.

    SU B.Water and fire core:Made in China, seeking deep transformation[J].New Energy Technology, 2021(2):28-30.

    [2] 余少祥.我国核电发展的现状、问题与对策建议[J].华北电力大学学报(社会科学版), 2020(5):1-9.

    YU S X.Present situation, problems and countermeasures of nuclear power development in China[J].Journal of North China Electric Power University (Social Sciences), 2020(5):1-9.

    [3] 任志明.屏蔽泵水润滑轴承特性及其对泵影响的研究[D].合肥:合肥工业大学, 2016.

    REN Z M.Study on the characteristics of water lubricated bearing of canned motor pump and its influence on the pump[D].Hefei:Hefei University of Technology, 2016.

    [4] 徐峰, 邢峥嵘, 刘晨光, 等.屏蔽泵轴承磨损破碎故障分析[J].河南化工, 2012, 29(12):44-45.

    XU F, XING Z R, LIU C G, et al.Analysis of wear and broken fault of canned pump bearing[J].Henan Chemical Industry, 2012, 29(12):44-45.

    [5] 朱庆高, 张志勤, 张翠萍.屏蔽泵滑动轴承的材料选择[J].水泵技术, 2000(6):22-25.

    ZHU Q G, ZHANG Z Q, ZHANG C P.Material selection on canned pump sliding bearing[J].Pump Technology, 2000(6):22-25.

    [6] 李丽.屏蔽电机轴承选择浅析[J].防爆电机, 2009, 44(6):58-60.

    LI L.Brief analysis on selection of canned motor bearing[J].Explosion-Proof Electric Machine, 2009, 44(6):58-60.

    [7] 李岩.硅化石墨的显微结构分析[J].炭素技术, 1992, 11(4):44-46.

    LI Y.Analysis on the microstructure of siliconized graphite[J].Carbon Techniques, 1992, 11(4):44-46.

    [8] 陈健.硅化石墨材料综述[J].电碳, 1996(4):1-6.

    CHEN J.A summary of the silicified graphite materials[J].electrical carbon, 1996(4):1-6.

    [9] 罗松, 罗宏, 李新跃, 等.高性能硅化石墨复合材料的制备及性能研究[J].炭素技术, 2018, 37(3):27-29.

    LUO S, LUO H, LI X Y, et al.Preparation and properties of high performance silicified graphite[J].Carbon Techniques, 2018, 37(3):27-29.

    [10]

    LIU F H, YI M Z, RAN L P, et al.Effects of heat treatment on microstructure and mechanical properties of 2.5D-Cf/BN/pyrocarbon composites by chemical vapor infiltration[J].Surfaces and Interfaces, 2021, 23:100951.

    [11]

    NAGARAJA A, GURURAJA S.Effect of chemical vapor infiltration induced matrix porosity on the mechanical behavior of ceramic matrix minicomposites[J].ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:Mechanical Engineering, 2020, 6(4):041005.

    [12]

    ZHANG J F, ZHOU X N, ZHI Q, et al.Microstructure and mechanical properties of porous SiC ceramics by carbothermal reduction and subsequent recrystallization sintering[J].Journal of Asian Ceramic Societies, 2020, 8(2):255-264.

    [13] 江东亮.高性能碳化硅工程材料[J].机械工程材料, 1985, 9(2):25-29.

    JIANG D L. High performance silicon carbide engineering ceramic[J].Materials for Mechanical Engineering, 1985, 9(2):25-29.

    [14]

    FANG C Q, YANG X, HE K J, et al.Microstructure and ablation properties of La2O3 modified C/C-SiC composites prepared via precursor infiltration pyrolysis[J].Journal of the European Ceramic Society, 2019, 39(4):762-772.

    [15] 刘瑞瑞, 杨鑫, 黄启忠, 等.C/C-SiC复合材料的低成本制备及其耐烧蚀性能[J].炭素技术, 2019, 38(5):33-38.

    LIU R R, YANG X, HUANG Q Z, et al.Low cost preparation and ablation properties of C/C-SiC composites[J].Carbon Techniques, 2019, 38(5):33-38.

    [16]

    GUO W J, BAI S X, YE Y C.Controllable fabrication and mechanical properties of C/C-SiC composites based on an electromagnetic induction heating reactive melt infiltration[J].Journal of the European Ceramic Society, 2021, 41(4):2347-2355.

    [17]

    JIANG Y L, NI D W, CHEN B W, et al.Fabrication and optimization of 3D-Cf/HfC-SiC-based composites via Sol-gel processing and reactive melt infiltration[J].Journal of the European Ceramic Society, 2021, 41(3):1788-1794.

    [18]

    FAN X M, YIN X W, CAO X Y, et al.Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration[J].Composites Science and Technology, 2015, 115:21-27.

    [19] 姜广鹏, 徐永东, 张军战, 等.反应熔体浸渗法制备C/SiC复合材料的显微结构与摩擦性能[J].玻璃钢/复合材料, 2005(1):25-28.

    JIANG G P, XU Y D, ZHANG J Z, et al.Microstructure and friction property of c/sic composite made by reactive melt in filtration[J].Fiber Reinforced Plastics/Composite, 2005(1):25-28.

    [20] 高雯, 龙冲生, 陈洪生.轴瓦用C/C-SiC复合材料的摩擦磨损性能研究[J].化学工程与装备, 2017(12):38-41.

    GAO W, LONG C S, CHEN H S.Study of friction and wear propertoes of C/SiC composites[J].Chemical Engineering & Equipment, 2017(12):38-41.

    [21]

    ZHANG Y H, XIAO Z C, WANG J P, et al.Effect of pyrocarbon content on thermal and frictional properties in C/C preforms of C/C-SiC composites[J].Wear, 2010, 269(1/2):132-138.

    [22]

    FAN S W, MA X, NING Y F, et al.Tribological performance of B4C modified C/C-SiC brake materials under dry air and wet conditions[J].Ceramics International, 2019, 45(10):12870-12879.

    [23]

    GER M D, HOU K H, WANG L M, et al.The friction and wear of Ni-P-PTFE composite deposits under water lubrication[J].Materials Chemistry and Physics, 2003, 77(3):755-764.

    [24]

    BIAN G Y, WU H Z.Friction performance of carbon/silicon carbide ceramic composite brakes in ambient air and water spray environment[J].Tribology International, 2015, 92:1-11.

    [25]

    JIA J H, CHEN J M, ZHOU H D, et al.Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication[J].Composites Science and Technology, 2005, 65(7/8):1139-1147.

    [26]

    SHI Q L, XIAO P.Effect of pyrolytic carbon content on microstructure and tribological properties of C/C-SiC brake composites fabricated by isothermal chemical vapor infiltration[J].Solid State Sciences, 2012, 14(1):26-34.

计量
  • 文章访问数:  11
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2022-07-20
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回