Effect of Laser Power on Microstructure and Properties of Laser Cladding Layer of WC Reinforced Ni35 Alloy
-
摘要: 采用不同激光功率(1.1,1.3,1.5 kW)在45钢表面激光熔覆制备WC增强Ni35合金熔覆层,利用光学显微镜、扫描电子显微镜、X射线衍射仪、显微维氏硬度计、摩擦磨损试验机、电化学工作站等研究了激光功率对熔覆层组织与性能的影响。结果表明:随着激光功率增大,熔覆层表面宏观裂纹减少,熔覆层稀释率增大;随着激光功率增大,熔覆层的显微硬度升高,磨损量和摩擦因数减小,不同激光功率熔覆层的耐磨性均优于基体;当激光功率为1.5 kW时,相比于基体,熔覆层的表面平均硬度提高了约270%,磨损量和摩擦因数分别降低了95.2%和54.93%;随着激光功率的增大,熔覆层的自腐蚀电位先减小后增加,自腐蚀电流密度先增大后降低,当激光功率为1.5 kW时,熔覆层的自腐蚀电流密度最小,耐腐蚀性相对较好。Abstract: WC reinforced Ni35 alloy ladding layers were prepared on 45 steel surface by laser cladding at different laser powers (1.1, 1.3, 1.5 kW). The effect of laser power on the microstructure and performance of the cladding layer was studied by optical microscope, scanning electron microscope, X-ray diffractometer, micro Vickers hardness tester, friction and wear testing machine, electrochemical workstation, etc. The results show that with increasing laser power, the macroscopic cracks on the surface of the cladding layer decreased, and the dilution rate of the cladding layer increased. With increasing laser power, the microhardness of the cladding layer increased, and the wear loss and friction factor decreased. The wear resistance of cladding layers with different laser powers was better than that of the matrix. When the laser power was 1.5 kW, the average hardness of the cladding layer surface was increased by 270%, and the wear loss and friction factor was reduced by 95.2% and 54.93%, comparing with that of the matrix. With increasing laser power, the self-corrosion potential of the cladding layer decreased first and then increased, and the self-corrosion current density increased first and then decreased. When the laser power was 1.5 kW, the self-corrosion current density of the cladding layer was the smallest, the corrosion resistance was relatively good.
-
-
[1] 王争强, 李文戈, 杜旭, 等.激光熔覆技术在轴类零件再制造过程中的应用现状[J].机械工程材料, 2020, 44(11):35-40. WANG Z Q, LI W G, DU X, et al.Applications of laser cladding technique in remanufacturing of shaft parts[J].Materials for Mechanical Engineering, 2020, 44(11):35-40.
[2] DAS B, SAWRAV K, SINGH S B, et al.Tribological behaviour of the hardfacing alloys utilised to fabricate the wear parts of an excavator bucket[J].Transactions of the IMF, 2021, 99(3):153-161.
[3] HAIDER I T, LEE M, PAGE R, et al.Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude[J].Journal of Biomechanics, 2021, 122:110434.
[4] HUANG Q W, YAN X P, WANG Y K, et al.Numerical modeling and experimental analysis on coupled torsional-longitudinal vibrations of a ship's propeller shaft[J].Ocean Engineering, 2017, 136:272-282.
[5] 徐丽萍, 毛杰, 张吉阜, 等.表面工程技术在海洋工程装备中的应用[J].中国材料进展, 2014, 33(1):1-8. XU L P, MAO J, ZHANG J F, et al.Applications of surface engineering technology in marine engineering equipment[J].Materials China, 2014, 33(1):1-8.
[6] 谢艳艳, 王荣, 胡艳华.SiC复合涂层的制备及对机电传动轴耐磨性能的影响[J].中国陶瓷, 2019, 55(7):9-15. XIE Y Y, WANG R, HU Y H.Preparation of SiC composite coating and its effect on wear resistance of mechanical and electrical drive shaft[J].China Ceramics, 2019, 55(7):9-15.
[7] 初雅杰, 李晓泉, 李建, 等.退火温度对激光熔覆AlFeCrCoNiTi高熵合金涂层组织与性能的影响[J].材料热处理学报, 2018, 39(6):91-95. CHU Y J, LI X Q, LI J, et al.Effects of annealing temperature on microstructure and properties of AlFeCrCoNiTi high-entropy alloy coating prepared by laser cladding[J].Transactions of Materials and Heat Treatment, 2018, 39(6):91-95.
[8] LIU H M, HU Z Q, QIN X P, et al.Parameter optimization and experimental study of the sprocket repairing using laser cladding[J].The International Journal of Advanced Manufacturing Technology, 2017, 91(9/10/11/12):3967-3975.
[9] MA N N, CHEN J, HUANG Z R, et al.Densification of C/SiC composite surface by the hybrid process of laser cladding and subsequent heat treatment[J].Ceramics International, 2019, 45(6):7703-7708.
[10] ALAM M K, EDRISY A, URBANIC J, et al.Microhardness and stress analysis of laser-cladded AISI420 martensitic stainless steel[J].Journal of Materials Engineering and Performance, 2017, 26(3):1076-1084.
[11] 郗文超, 宋博学, 王钊, 等.表面熔覆工艺的成形特征及粉末有效利用率研究[J].表面技术, 2019, 48(3):211-218. XI W C, SONG B X, WANG Z, et al.Forming characteristics and powder effective utilization research of surface cladding process[J].Surface Technology, 2019, 48(3):211-218.
[12] SHU D, LI Z G, ZHANG K, et al.In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding[J].Materials Letters, 2017, 195:178-181.
[13] 徐平, 江国业, 胡艳娇, 等.匙孔效应对激光熔覆层横截面几何形貌的影响研究[J].表面技术, 2019, 48(10):125-130. XU P, JIANG G Y, HU Y J, et al.Influence of keyhole effect on the cross-section geometry of laser cladding layer[J].Surface Technology, 2019, 48(10):125-130.
[14] 杨晓红, 陈菊芳, 王泽, 等.45钢表面激光熔覆Ni35粉末的耐磨耐腐蚀性研究[J].热加工工艺, 2015, 44(24):150-152. YANG X H, CHEN J F, WANG Z, et al.Study on laser cladding wear and corrosion resistance layers on 45 steel[J].Hot Working Technology, 2015, 44(24):150-152.
[15] 张艳梅, 华海, 帅歌国, 等.激光熔覆微纳米WC颗粒增强镍基金属陶瓷涂层的裂纹研究[J].热加工工艺, 2014, 43(24):154-157. ZHANG Y M, HUA H, SHUAI G G, et al.Study on cracking behavior of micro-nano WC reinforced Ni-matrix composite coating by laser cladding[J].Hot Working Technology, 2014, 43(24):154-157.
[16] 陆海峰, 潘晨阳, 覃恩伟, 等.45钢表面激光熔覆WC/Ni基合金复合覆层的组织和性能[J].金属热处理, 2019, 44(12):19-25. LU H F, PAN C Y, QIN E W, et al.Microstructure and properties of laser clad WC/Ni-based alloy composite coating on 45 steel surface[J].Heat Treatment of Metals, 2019, 44(12):19-25.
[17] 周继烈, 程耀东.Ni基WC金属陶瓷激光熔覆开裂特性的试验研究[J].电加工与模具, 2003(4):32-34. ZHOU J L, CHENG Y D.Experimental investigation of cracking behaviors in laser coating of Ni-based WC composite[J].Electromachining & Mould, 2003(4):32-34.
[18] FU F X, ZHANG Y L, CHANG G R, et al.Analysis on the physical mechanism of laser cladding crack and its influence factors[J].Optik, 2016, 127(1):200-202.
[19] 崔岗, 韩彬, 崔娜, 等.扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响[J].中国表面工程, 2014, 27(4):82-88. CUI G, HAN B, CUI N, et al.Effects of scanning speed on microstructure and properties of laser cladding Ni-based WC alloy coating[J].China Surface Engineering, 2014, 27(4):82-88.
[20] 井振宇.激光熔覆Ni35+WC+Cr涂层组织与性能研究[D].乌鲁木齐:新疆大学, 2020. JING Z Y.Study on microstructure and properties of laser cladding Ni35+WC+Cr coating[D].Urumqi:Xinjiang University, 2020.
[21] 韩晨阳, 孙耀宁, 王国建, 等.不锈钢冷轧辊激光表面修复工艺研究[J].应用激光, 2020, 40(4):598-604. HAN C Y, SUN Y N, WANG G J, et al.Study on laser surface repair technology of stainless steel cold roll[J].Applied Laser, 2020, 40(4):598-604.
[22] 权秀敏, 陆玉兵, 黄红兵, 等.激光熔覆TiB-TiC/Co基复合涂层宏观形貌研究[J].西昌学院学报(自然科学版), 2022, 36(2):55-59. QUAN X M, LU Y B, HUANG H B, et al.Study of the macro form of the TiB-TiC/Co-based composite coatings by laser cladding[J].Journal of xichang University (Natural Science Edition), 2022, 36(2):55-59.
[23] 井振宇, 李新梅.激光熔覆Ni35WC11涂层的参数优化设计[J].激光与光电子学进展, 2020, 57(9):091406. JING Z Y, LI X M.Parameter optimization design of laser cladding Ni35WC11 coating[J].Laser & Optoelectronics Progress, 2020, 57(9):091406.
[24] 钱绍祥.激光熔覆镍基合金及其表面激光喷丸的微观结构、强化机理与性能研究[D].镇江:江苏大学, 2021. QIAN S X.Research on microstructure, strengthening mechanism and performance of laser cladding nickel-based alloy and its surface laser peening[D].Zhenjiang:Jiangsu University, 2021. [25] 黄雪.激光熔覆钴基合金加碳化钨混合粉末熔覆层性能的研究[D].沈阳:沈阳工业大学, 2013. HUANG X.Reasearch on performance of laser cladding mixed powder with Co-based alloy and WC[D].Shenyang:Shenyang University of Technology, 2013. [26] 朱红梅, 胡际鹏, 李柏春, 等.铁基材料表面激光熔覆不锈钢涂层的研究进展[J].表面技术, 2020, 49(3):74-84. ZHU H M, HU J P, LI B C, et al.Research progress of laser cladding stainless steel coating on Fe-based substrate[J].Surface Technology, 2020, 49(3):74-84.
[27] 雷靖峰, 祁文军, 谢亚东, 等.U71Mn钢表面激光熔覆Ni60-25%WC涂层工艺参数优化的研究[J].表面技术, 2018, 47(3):66-71. LEI J F, QI W J, XIE Y D, et al.Optimization of process parameters of laser cladding Ni60-25%WC coating on U71Mn steel[J].Surface Technology, 2018, 47(3):66-71. 欢迎来稿欢迎订阅欢迎刊登广告
计量
- 文章访问数: 6
- HTML全文浏览量: 0
- PDF下载量: 2